-
Something wrong with this record ?
RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution
KM. Górecka, M. Krepl, A. Szlachcic, J. Poznański, J. Šponer, M. Nowotny,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- Arginine chemistry MeSH
- Bacterial Proteins chemistry MeSH
- Biocatalysis MeSH
- DNA, Bacterial chemistry metabolism MeSH
- DNA, Cruciform chemistry MeSH
- Base Pairing MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation MeSH
- Thermus thermophilus metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Holliday junctions (HJs) are four-way DNA structures that occur in DNA repair by homologous recombination. Specialized nucleases, termed resolvases, remove (i.e., resolve) HJs. The bacterial protein RuvC is a canonical resolvase that introduces two symmetric cuts into the HJ. For complete resolution of the HJ, the two cuts need to be tightly coordinated. They are also specific for cognate DNA sequences. Using a combination of structural biology, biochemistry, and a computational approach, here we show that correct positioning of the substrate for cleavage requires conformational changes within the bound DNA. These changes involve rare high-energy states with protein-assisted base flipping that are readily accessible for the cognate DNA sequence but not for non-cognate sequences. These conformational changes and the relief of protein-induced structural tension of the DNA facilitate coordination between the two cuts. The unique DNA cleavage mechanism of RuvC demonstrates the importance of high-energy conformational states in nucleic acid readouts.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19044538
- 003
- CZ-PrNML
- 005
- 20200113080923.0
- 007
- ta
- 008
- 200109s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-019-11900-8 $2 doi
- 035 __
- $a (PubMed)31506434
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Górecka, Karolina Maria $u Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena St., 02-109, Warsaw, Poland.
- 245 10
- $a RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution / $c KM. Górecka, M. Krepl, A. Szlachcic, J. Poznański, J. Šponer, M. Nowotny,
- 520 9_
- $a Holliday junctions (HJs) are four-way DNA structures that occur in DNA repair by homologous recombination. Specialized nucleases, termed resolvases, remove (i.e., resolve) HJs. The bacterial protein RuvC is a canonical resolvase that introduces two symmetric cuts into the HJ. For complete resolution of the HJ, the two cuts need to be tightly coordinated. They are also specific for cognate DNA sequences. Using a combination of structural biology, biochemistry, and a computational approach, here we show that correct positioning of the substrate for cleavage requires conformational changes within the bound DNA. These changes involve rare high-energy states with protein-assisted base flipping that are readily accessible for the cognate DNA sequence but not for non-cognate sequences. These conformational changes and the relief of protein-induced structural tension of the DNA facilitate coordination between the two cuts. The unique DNA cleavage mechanism of RuvC demonstrates the importance of high-energy conformational states in nucleic acid readouts.
- 650 _2
- $a arginin $x chemie $7 D001120
- 650 _2
- $a bakteriální proteiny $x chemie $7 D001426
- 650 _2
- $a párování bází $7 D020029
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a biokatalýza $7 D055162
- 650 _2
- $a DNA bakterií $x chemie $x metabolismus $7 D004269
- 650 _2
- $a křížová struktura DNA $x chemie $7 D045566
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a Thermus thermophilus $x metabolismus $7 D016963
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Krepl, Miroslav $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic. krepl@ibp.cz.
- 700 1_
- $a Szlachcic, Aleksandra $u Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena St., 02-109, Warsaw, Poland.
- 700 1_
- $a Poznański, Jarosław $u Institute of Biochemistry and Biophysics Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland.
- 700 1_
- $a Šponer, Jiří $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic. Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 771 46, Olomouc, Czech Republic.
- 700 1_
- $a Nowotny, Marcin $u Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena St., 02-109, Warsaw, Poland. mnowotny@iimcb.gov.pl.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 10, č. 1 (2019), s. 4102
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31506434 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200113081255 $b ABA008
- 999 __
- $a ok $b bmc $g 1482807 $s 1083211
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 10 $c 1 $d 4102 $e 20190910 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- GRA __
- $p Wellcome Trust $2 United Kingdom
- LZP __
- $a Pubmed-20200109