• Je něco špatně v tomto záznamu ?

Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes

F. Papanikos, JAJ. Clément, E. Testa, R. Ravindranathan, C. Grey, I. Dereli, A. Bondarieva, S. Valerio-Cabrera, M. Stanzione, A. Schleiffer, P. Jansa, D. Lustyk, JF. Fei, IR. Adams, J. Forejt, M. Barchi, B. de Massy, A. Toth,

. 2019 ; 74 (5) : 1069-1085.e11. [pub] 20190415

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19044872

Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19044872
003      
CZ-PrNML
005      
20200116085352.0
007      
ta
008      
200109s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.molcel.2019.03.022 $2 doi
035    __
$a (PubMed)31000436
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Papanikos, Frantzeskos $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
245    10
$a Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes / $c F. Papanikos, JAJ. Clément, E. Testa, R. Ravindranathan, C. Grey, I. Dereli, A. Bondarieva, S. Valerio-Cabrera, M. Stanzione, A. Schleiffer, P. Jansa, D. Lustyk, JF. Fei, IR. Adams, J. Forejt, M. Barchi, B. de Massy, A. Toth,
520    9_
$a Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.
650    _2
$a zvířata $7 D000818
650    _2
$a transportní proteiny $x chemie $x genetika $7 D002352
650    _2
$a segregace chromozomů $x genetika $7 D020090
650    12
$a dvouřetězcové zlomy DNA $7 D053903
650    _2
$a homologní rekombinace $x genetika $7 D059765
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a meióza $x genetika $7 D008540
650    _2
$a myši $7 D051379
650    _2
$a pseudoautozomální oblasti $x genetika $7 D000071439
650    _2
$a spermatocyty $x růst a vývoj $x metabolismus $7 D013090
650    _2
$a chromozom X $x genetika $7 D014960
650    _2
$a chromozom Y $x genetika $7 D014998
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Clément, Julie A J $u Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.
700    1_
$a Testa, Erika $u Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Via Montpellier n.1, 00133 Rome, Italy.
700    1_
$a Ravindranathan, Ramya $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
700    1_
$a Grey, Corinne $u Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.
700    1_
$a Dereli, Ihsan $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
700    1_
$a Bondarieva, Anastasiia $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
700    1_
$a Valerio-Cabrera, Sarai $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
700    1_
$a Stanzione, Marcello $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
700    1_
$a Schleiffer, Alexander $u Research Institute of Molecular Pathology (IMP), Campus Vienna BioCenter 1, Vienna BioCenter (VBC), 1030 Vienna, Austria; Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030 Vienna, Austria.
700    1_
$a Jansa, Petr $u Institute of Molecular Genetics, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
700    1_
$a Lustyk, Diana $u Institute of Molecular Genetics, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
700    1_
$a Fei, Ji-Feng $u Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China.
700    1_
$a Adams, Ian R $u MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
700    1_
$a Forejt, Jiri $u Institute of Molecular Genetics, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
700    1_
$a Barchi, Marco $u Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Via Montpellier n.1, 00133 Rome, Italy.
700    1_
$a de Massy, Bernard $u Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France. Electronic address: bernard.de-massy@igh.cnrs.fr.
700    1_
$a Toth, Attila $u Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany. Electronic address: attila.toth@mailbox.tu-dresden.de.
773    0_
$w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 74, č. 5 (2019), s. 1069-1085.e11
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31000436 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200116085725 $b ABA008
999    __
$a ok $b bmc $g 1483141 $s 1083545
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 74 $c 5 $d 1069-1085.e11 $e 20190415 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...