-
Je něco špatně v tomto záznamu ?
Revitalising the rudimentary replacement dentition in the mouse
EM. Popa, M. Buchtova, AS. Tucker,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1953 do Před 6 měsíci
Open Access Digital Library
od 1953-03-01 do Před 6 měsíci
PubMed
30658984
DOI
10.1242/dev.171363
Knihovny.cz E-zdroje
- MeSH
- miniaturní prasata MeSH
- myši transgenní MeSH
- myši MeSH
- prasata MeSH
- proliferace buněk fyziologie MeSH
- signální dráha Wnt fyziologie MeSH
- transkripční faktory SOXB1 genetika metabolismus MeSH
- zubní zárodek cytologie embryologie MeSH
- zuby cytologie embryologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most mammals have two sets of teeth (diphyodont) - a deciduous dentition replaced by a permanent dentition; however, the mouse possesses only one tooth generation (monophyodont). In diphyodonts, the replacement tooth forms on the lingual side of the first tooth from the successional dental lamina. This lamina expresses the stem/progenitor marker Sox2 and has activated Wnt/β-catenin signalling at its tip. Although the mouse does not replace its teeth, a transient rudimentary successional dental lamina (RSDL) still forms during development. The mouse RSDL houses Sox2-positive cells, but no Wnt/β-catenin signalling. Here, we show that stabilising Wnt/β-catenin signalling in the RSDL in the mouse leads to proliferation of the RSDL and formation of lingually positioned teeth. Although Sox2 has been shown to repress Wnt activity, overexpression of Wnts leads to a downregulation of Sox2, suggesting a negative-feedback loop in the tooth. In the mouse, the first tooth represses the formation of the replacement, and isolation of the RSDL is sufficient to induce formation of a new tooth germ. Our data highlight key mechanisms that may have influenced the evolution of replacement teeth.This article has an associated 'The people behind the papers' interview.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045040
- 003
- CZ-PrNML
- 005
- 20200113144110.0
- 007
- ta
- 008
- 200109s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/dev.171363 $2 doi
- 035 __
- $a (PubMed)30658984
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Popa, Elena M $u Centre for Craniofacial and Regenerative Biology, Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK.
- 245 10
- $a Revitalising the rudimentary replacement dentition in the mouse / $c EM. Popa, M. Buchtova, AS. Tucker,
- 520 9_
- $a Most mammals have two sets of teeth (diphyodont) - a deciduous dentition replaced by a permanent dentition; however, the mouse possesses only one tooth generation (monophyodont). In diphyodonts, the replacement tooth forms on the lingual side of the first tooth from the successional dental lamina. This lamina expresses the stem/progenitor marker Sox2 and has activated Wnt/β-catenin signalling at its tip. Although the mouse does not replace its teeth, a transient rudimentary successional dental lamina (RSDL) still forms during development. The mouse RSDL houses Sox2-positive cells, but no Wnt/β-catenin signalling. Here, we show that stabilising Wnt/β-catenin signalling in the RSDL in the mouse leads to proliferation of the RSDL and formation of lingually positioned teeth. Although Sox2 has been shown to repress Wnt activity, overexpression of Wnts leads to a downregulation of Sox2, suggesting a negative-feedback loop in the tooth. In the mouse, the first tooth represses the formation of the replacement, and isolation of the RSDL is sufficient to induce formation of a new tooth germ. Our data highlight key mechanisms that may have influenced the evolution of replacement teeth.This article has an associated 'The people behind the papers' interview.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a proliferace buněk $x fyziologie $7 D049109
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši transgenní $7 D008822
- 650 _2
- $a transkripční faktory SOXB1 $x genetika $x metabolismus $7 D055748
- 650 _2
- $a prasata $7 D013552
- 650 _2
- $a miniaturní prasata $7 D013556
- 650 _2
- $a zuby $x cytologie $x embryologie $7 D014070
- 650 _2
- $a zubní zárodek $x cytologie $x embryologie $7 D014083
- 650 _2
- $a signální dráha Wnt $x fyziologie $7 D060449
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Buchtova, Marcela $u Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic. Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
- 700 1_
- $a Tucker, Abigail S $u Centre for Craniofacial and Regenerative Biology, Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK abigail.tucker@kcl.ac.uk. Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic.
- 773 0_
- $w MED00001363 $t Development (Cambridge, England) $x 1477-9129 $g Roč. 146, č. 3 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30658984 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200113144442 $b ABA008
- 999 __
- $a ok $b bmc $g 1483309 $s 1083713
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 146 $c 3 $e 20190208 $i 1477-9129 $m Development $n Development $x MED00001363
- LZP __
- $a Pubmed-20200109