• Je něco špatně v tomto záznamu ?

Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study

Q. Tao, W. Yan, Y. Wang, EHM. Paiman, DP. Shamonin, P. Garg, S. Plein, L. Huang, L. Xia, M. Sramko, J. Tintera, A. de Roos, HJ. Lamb, RJ. van der Geest,

. 2019 ; 290 (1) : 81-88. [pub] 20181009

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045201

Grantová podpora
RG/16/1/32092 British Heart Foundation - United Kingdom

Purpose To develop a deep learning-based method for fully automated quantification of left ventricular (LV) function from short-axis cine MR images and to evaluate its performance in a multivendor and multicenter setting. Materials and Methods This retrospective study included cine MRI data sets obtained from three major MRI vendors in four medical centers from 2008 to 2016. Three convolutional neural networks (CNNs) with the U-NET architecture were trained on data sets of increasing variability: (a) a single-vendor, single-center, homogeneous cohort of 100 patients (CNN1); (b) a single-vendor, multicenter, heterogeneous cohort of 200 patients (CNN2); and (c) a multivendor, multicenter, heterogeneous cohort of 400 patients (CNN3). All CNNs were tested on an independent multivendor, multicenter data set of 196 patients. CNN performance was evaluated with respect to the manual annotations from three experienced observers in terms of (a) LV detection accuracy, (b) LV segmentation accuracy, and (c) LV functional parameter accuracy. Automatic and manual results were compared with the paired Wilcoxon test, Pearson correlation, and Bland-Altman analysis. Results CNN3 achieved the highest performance on the independent testing data set. The average perpendicular distance compared with manual analysis was 1.1 mm ± 0.3 for CNN3, compared with 1.5 mm ± 1.0 for CNN1 (P < .05) and 1.3 mm ± 0.6 for CNN2 (P < .05). The LV function parameters derived from CNN3 showed a high correlation (r2 ≥ 0.98) and agreement with those obtained by experts for data sets from different vendors and centers. Conclusion A deep learning-based method trained on a data set with high variability can achieve fully automated and accurate cine MRI analysis on multivendor, multicenter cine MRI data. © RSNA, 2018 See also the editorial by Colletti in this issue.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045201
003      
CZ-PrNML
005      
20200116133630.0
007      
ta
008      
200109s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1148/radiol.2018180513 $2 doi
035    __
$a (PubMed)30299231
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Tao, Qian $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
245    10
$a Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study / $c Q. Tao, W. Yan, Y. Wang, EHM. Paiman, DP. Shamonin, P. Garg, S. Plein, L. Huang, L. Xia, M. Sramko, J. Tintera, A. de Roos, HJ. Lamb, RJ. van der Geest,
520    9_
$a Purpose To develop a deep learning-based method for fully automated quantification of left ventricular (LV) function from short-axis cine MR images and to evaluate its performance in a multivendor and multicenter setting. Materials and Methods This retrospective study included cine MRI data sets obtained from three major MRI vendors in four medical centers from 2008 to 2016. Three convolutional neural networks (CNNs) with the U-NET architecture were trained on data sets of increasing variability: (a) a single-vendor, single-center, homogeneous cohort of 100 patients (CNN1); (b) a single-vendor, multicenter, heterogeneous cohort of 200 patients (CNN2); and (c) a multivendor, multicenter, heterogeneous cohort of 400 patients (CNN3). All CNNs were tested on an independent multivendor, multicenter data set of 196 patients. CNN performance was evaluated with respect to the manual annotations from three experienced observers in terms of (a) LV detection accuracy, (b) LV segmentation accuracy, and (c) LV functional parameter accuracy. Automatic and manual results were compared with the paired Wilcoxon test, Pearson correlation, and Bland-Altman analysis. Results CNN3 achieved the highest performance on the independent testing data set. The average perpendicular distance compared with manual analysis was 1.1 mm ± 0.3 for CNN3, compared with 1.5 mm ± 1.0 for CNN1 (P < .05) and 1.3 mm ± 0.6 for CNN2 (P < .05). The LV function parameters derived from CNN3 showed a high correlation (r2 ≥ 0.98) and agreement with those obtained by experts for data sets from different vendors and centers. Conclusion A deep learning-based method trained on a data set with high variability can achieve fully automated and accurate cine MRI analysis on multivendor, multicenter cine MRI data. © RSNA, 2018 See also the editorial by Colletti in this issue.
650    12
$a deep learning $7 D000077321
650    _2
$a srdeční komory $x diagnostické zobrazování $7 D006352
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a magnetická rezonance kinematografická $x metody $7 D019028
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a srdce - funkce komor $x fyziologie $7 D016276
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Yan, Wenjun $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Wang, Yuanyuan $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Paiman, Elisabeth H M $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Shamonin, Denis P $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Garg, Pankaj $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Plein, Sven $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Huang, Lu $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Xia, Liming $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Sramko, Marek $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Tintera, Jarsolav $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a de Roos, Albert $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Lamb, Hildo J $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a van der Geest, Rob J $u From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
773    0_
$w MED00004047 $t Radiology $x 1527-1315 $g Roč. 290, č. 1 (2019), s. 81-88
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30299231 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200116134004 $b ABA008
999    __
$a ok $b bmc $g 1483470 $s 1083874
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 290 $c 1 $d 81-88 $e 20181009 $i 1527-1315 $m Radiology $n Radiology $x MED00004047
GRA    __
$a RG/16/1/32092 $p British Heart Foundation $2 United Kingdom
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...