-
Je něco špatně v tomto záznamu ?
Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms
A. Prasad, M. Sedlářová, P. Pospíšil,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
- MeSH
- Arabidopsis metabolismus MeSH
- barva MeSH
- Chlamydomonas reinhardtii metabolismus MeSH
- fluorescenční barviva metabolismus MeSH
- fotosyntéza fyziologie MeSH
- kyslík metabolismus MeSH
- oxidace-redukce MeSH
- singletový kyslík metabolismus MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Formation of singlet oxygen (1O2) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for 1O2 imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for 1O2 imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp. PCC 6803, unicellular green alga Chlamydomonas reinhardtii and higher plant Arabidopsis thaliana. Penetration of SOSG differs in both unicellular organisms; while it is rather convenient for Chlamydomonas it is restricted by the presence of mucoid sheath of Synechocystis, which penetrability might be improved by mild heating. In Arabidopsis, SOSG penetration is limited due to tissue complexity which can be increased by pressure infiltration using a shut syringe. Photosensitization of SOSG and SOSG endoperoxide formed by its interaction with 1O2 might be prevented by illumination of samples by a red light. When measured under controlled conditions given above, SOSG might serve as specific probe for detection of intracellular 1O2 formation in photosynthetic organisms.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045249
- 003
- CZ-PrNML
- 005
- 20200113081944.0
- 007
- ta
- 008
- 200109s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-018-31638-5 $2 doi
- 035 __
- $a (PubMed)30209276
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Prasad, Ankush $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
- 245 10
- $a Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms / $c A. Prasad, M. Sedlářová, P. Pospíšil,
- 520 9_
- $a Formation of singlet oxygen (1O2) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for 1O2 imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for 1O2 imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp. PCC 6803, unicellular green alga Chlamydomonas reinhardtii and higher plant Arabidopsis thaliana. Penetration of SOSG differs in both unicellular organisms; while it is rather convenient for Chlamydomonas it is restricted by the presence of mucoid sheath of Synechocystis, which penetrability might be improved by mild heating. In Arabidopsis, SOSG penetration is limited due to tissue complexity which can be increased by pressure infiltration using a shut syringe. Photosensitization of SOSG and SOSG endoperoxide formed by its interaction with 1O2 might be prevented by illumination of samples by a red light. When measured under controlled conditions given above, SOSG might serve as specific probe for detection of intracellular 1O2 formation in photosynthetic organisms.
- 650 _2
- $a Arabidopsis $x metabolismus $7 D017360
- 650 _2
- $a Chlamydomonas reinhardtii $x metabolismus $7 D016825
- 650 _2
- $a barva $7 D003116
- 650 _2
- $a fluorescenční barviva $x metabolismus $7 D005456
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a kyslík $x metabolismus $7 D010100
- 650 _2
- $a fotosyntéza $x fyziologie $7 D010788
- 650 _2
- $a singletový kyslík $x metabolismus $7 D026082
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sedlářová, Michaela $u Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
- 700 1_
- $a Pospíšil, Pavel $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic. pavel.pospisil@upol.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 8, č. 1 (2018), s. 13685
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30209276 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200113082316 $b ABA008
- 999 __
- $a ok $b bmc $g 1483518 $s 1083922
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 8 $c 1 $d 13685 $e 20180912 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20200109