Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter

M. Dostál, M. Keřkovský, E. Korit Áková, E. Němcová, J. Stulík, M. Staňková, V. Bernard,

. 2018 ; 48 (5) : 1217-1227. [pub] 20180429

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
AZV-15-32133A Czech Health Research Council - International
MUNI/A/1464/2014 Grant Agency of Masaryk University - International
NV15-32133A MZ0 CEP Register

Digital library NLK
Full text - Article

E-resources Online Full text

NLK Medline Complete (EBSCOhost) from 2012-01-01 to 1 year ago
Wiley Free Content from 1999 to 5 years ago

BACKGROUND: Segmentation of the gray and white matter (GM, WM) of the human spinal cord in MRI images as well as the analysis of spinal cord diffusivity are challenging. When appropriately segmented, diffusion tensor imaging (DTI) of the spinal cord might be beneficial in the diagnosis and prognosis of several diseases. PURPOSE: To evaluate the applicability of a semiautomatic algorithm provided by ITK-SNAP in classification mode (CLASS) for segmenting cervical spinal cord GM, WM in MRI images and analyzing DTI parameters. STUDY TYPE: Prospective. SUBJECTS: Twenty healthy volunteers. SEQUENCES: 1.5T, turbo spin echo, fast field echo, single-shot echo planar imaging. ASSESSMENT: Three raters segmented the tissues by manual, CLASS, and atlas-based methods (Spinal Cord Toolbox, SCT) on T2 -weighted and DTI images. Masks were quantified by similarity and distance metrics, then analyzed for repeatability and mutual comparability. Masks created over T2 images were registered into diffusion space and fractional anisotropy (FA) values were statistically evaluated for dependency on method, rater, or tissue. STATISTICAL TESTS: t-test, analysis of variance (ANOVA), coefficient of variation, Dice coefficient, Hausdorff distance. RESULTS: CLASS segmentation reached better agreement with manual segmentation than did SCT (P < 0.001). Intra- and interobserver repeatability of SCT was better for GM and WM (both P < 0.001) but comparable with CLASS in entire spinal cord segmentation (P = 0.17 and P = 0.07, respectively). While FA values of whole spinal cord were not influenced by choice of segmentation method, both semiautomatic methods yielded lower FA values (P < 0.005) for GM than did the manual technique (mean differences 0.02 and 0.04 for SCT and CLASS, respectively). Repeatability of FA values for all methods was sufficient, with mostly less than 2% variance. DATA CONCLUSION: The presented semiautomatic method in combination with the proposed approach to data registration and analyses of spinal cord diffusivity can potentially be used as an alternative to atlas-based segmentation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1217-1227.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045472
003      
CZ-PrNML
005      
20200115101602.0
007      
ta
008      
200109s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jmri.26166 $2 doi
035    __
$a (PubMed)29707834
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Dostál, Marek $u Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic. Department of Radiology, University Hospital Brno and Masaryk University, Brno, Czech Republic.
245    10
$a Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter / $c M. Dostál, M. Keřkovský, E. Korit Áková, E. Němcová, J. Stulík, M. Staňková, V. Bernard,
520    9_
$a BACKGROUND: Segmentation of the gray and white matter (GM, WM) of the human spinal cord in MRI images as well as the analysis of spinal cord diffusivity are challenging. When appropriately segmented, diffusion tensor imaging (DTI) of the spinal cord might be beneficial in the diagnosis and prognosis of several diseases. PURPOSE: To evaluate the applicability of a semiautomatic algorithm provided by ITK-SNAP in classification mode (CLASS) for segmenting cervical spinal cord GM, WM in MRI images and analyzing DTI parameters. STUDY TYPE: Prospective. SUBJECTS: Twenty healthy volunteers. SEQUENCES: 1.5T, turbo spin echo, fast field echo, single-shot echo planar imaging. ASSESSMENT: Three raters segmented the tissues by manual, CLASS, and atlas-based methods (Spinal Cord Toolbox, SCT) on T2 -weighted and DTI images. Masks were quantified by similarity and distance metrics, then analyzed for repeatability and mutual comparability. Masks created over T2 images were registered into diffusion space and fractional anisotropy (FA) values were statistically evaluated for dependency on method, rater, or tissue. STATISTICAL TESTS: t-test, analysis of variance (ANOVA), coefficient of variation, Dice coefficient, Hausdorff distance. RESULTS: CLASS segmentation reached better agreement with manual segmentation than did SCT (P < 0.001). Intra- and interobserver repeatability of SCT was better for GM and WM (both P < 0.001) but comparable with CLASS in entire spinal cord segmentation (P = 0.17 and P = 0.07, respectively). While FA values of whole spinal cord were not influenced by choice of segmentation method, both semiautomatic methods yielded lower FA values (P < 0.005) for GM than did the manual technique (mean differences 0.02 and 0.04 for SCT and CLASS, respectively). Repeatability of FA values for all methods was sufficient, with mostly less than 2% variance. DATA CONCLUSION: The presented semiautomatic method in combination with the proposed approach to data registration and analyses of spinal cord diffusivity can potentially be used as an alternative to atlas-based segmentation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1217-1227.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a anizotropie $7 D016880
650    _2
$a krční mícha $x diagnostické zobrazování $7 D066193
650    12
$a difuzní magnetická rezonance $7 D038524
650    12
$a zobrazování difuzních tenzorů $7 D056324
650    12
$a echoplanární zobrazování $7 D017352
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a šedá hmota $x diagnostické zobrazování $7 D066128
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a odchylka pozorovatele $7 D015588
650    _2
$a prospektivní studie $7 D011446
650    _2
$a poranění míchy $x diagnostické zobrazování $7 D013119
650    _2
$a bílá hmota $x diagnostické zobrazování $7 D066127
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Keřkovský, Miloš $u Department of Radiology, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Korit Áková, Eva $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Němcová, Eva $u Department of Radiology, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Stulík, Jakub $u Department of Radiology, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Staňková, Monika $u Department of Radiology, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Bernard, Vladan $u Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
773    0_
$w MED00004911 $t Journal of magnetic resonance imaging : JMRI $x 1522-2586 $g Roč. 48, č. 5 (2018), s. 1217-1227
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29707834 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200115101935 $b ABA008
999    __
$a ok $b bmc $g 1483741 $s 1084145
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 48 $c 5 $d 1217-1227 $e 20180429 $i 1522-2586 $m Journal of magnetic resonance imaging $n J Magn Reson Imaging $x MED00004911
GRA    __
$a AZV-15-32133A $p Czech Health Research Council $2 International
GRA    __
$a MUNI/A/1464/2014 $p Grant Agency of Masaryk University $2 International
GRA    __
$a NV15-32133A $p MZ0
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...