Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth

J. Jansa, P. Šmilauer, J. Borovička, H. Hršelová, ST. Forczek, K. Slámová, T. Řezanka, M. Rozmoš, P. Bukovská, M. Gryndler,

. 2020 ; 30 (1) : 63-77. [pub] 20200215

Language English Country Germany

Document type Journal Article

Grant support
P504-12-1665 Grantová Agentura České Republiky (CZ)
18-04892S Grantová Agentura České Republiky (CZ)
LK11224 Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
RVO61388971 Akademie Věd České Republiky
RVO 67985831 Akademie Věd České Republiky (CZ)

Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005554
003      
CZ-PrNML
005      
20241126150343.0
007      
ta
008      
200511s2020 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00572-020-00937-z $2 doi
035    __
$a (PubMed)32062707
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Jansa, Jan $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. jansa@biomed.cas.cz.
245    10
$a Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth / $c J. Jansa, P. Šmilauer, J. Borovička, H. Hršelová, ST. Forczek, K. Slámová, T. Řezanka, M. Rozmoš, P. Bukovská, M. Gryndler,
520    9_
$a Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.
650    12
$a Andropogon $7 D031722
650    _2
$a biomasa $7 D018533
650    12
$a Glomeromycota $7 D055137
650    12
$a mykorhiza $7 D038821
650    _2
$a kořeny rostlin $7 D018517
650    _2
$a symbióza $7 D013559
655    _2
$a časopisecké články $7 D016428
700    1_
$a Šmilauer, Petr $u Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
700    1_
$a Borovička, Jan $u Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.
700    1_
$a Hršelová, Hana $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
700    1_
$a Forczek, Sándor T $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. Isotope Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
700    1_
$a Slámová, Kristýna $u Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
700    1_
$a Řezanka, Tomáš $u Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
700    1_
$a Rozmoš, Martin $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
700    1_
$a Bukovská, Petra $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. $7 xx0326030
700    1_
$a Gryndler, Milan $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic.
773    0_
$w MED00180395 $t Mycorrhiza $x 1432-1890 $g Roč. 30, č. 1 (2020), s. 63-77
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32062707 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20241126150339 $b ABA008
999    __
$a ok $b bmc $g 1524412 $s 1095610
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 30 $c 1 $d 63-77 $e 20200215 $i 1432-1890 $m Mycorrhiza $n Mycorrhiza $x MED00180395
GRA    __
$a P504-12-1665 $p Grantová Agentura České Republiky (CZ)
GRA    __
$a 18-04892S $p Grantová Agentura České Republiky (CZ)
GRA    __
$a LK11224 $p Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
GRA    __
$a RVO61388971 $p Akademie Věd České Republiky
GRA    __
$a RVO 67985831 $p Akademie Věd České Republiky (CZ)
LZP    __
$a Pubmed-20200511

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...