-
Something wrong with this record ?
Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth
J. Jansa, P. Šmilauer, J. Borovička, H. Hršelová, ST. Forczek, K. Slámová, T. Řezanka, M. Rozmoš, P. Bukovská, M. Gryndler,
Language English Country Germany
Document type Journal Article
Grant support
P504-12-1665
Grantová Agentura České Republiky (CZ)
18-04892S
Grantová Agentura České Republiky (CZ)
LK11224
Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
RVO61388971
Akademie Věd České Republiky
RVO 67985831
Akademie Věd České Republiky (CZ)
- MeSH
- Andropogon * MeSH
- Biomass MeSH
- Glomeromycota * MeSH
- Plant Roots MeSH
- Mycorrhizae * MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005554
- 003
- CZ-PrNML
- 005
- 20241126150343.0
- 007
- ta
- 008
- 200511s2020 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00572-020-00937-z $2 doi
- 035 __
- $a (PubMed)32062707
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Jansa, Jan $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. jansa@biomed.cas.cz.
- 245 10
- $a Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth / $c J. Jansa, P. Šmilauer, J. Borovička, H. Hršelová, ST. Forczek, K. Slámová, T. Řezanka, M. Rozmoš, P. Bukovská, M. Gryndler,
- 520 9_
- $a Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.
- 650 12
- $a Andropogon $7 D031722
- 650 _2
- $a biomasa $7 D018533
- 650 12
- $a Glomeromycota $7 D055137
- 650 12
- $a mykorhiza $7 D038821
- 650 _2
- $a kořeny rostlin $7 D018517
- 650 _2
- $a symbióza $7 D013559
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Šmilauer, Petr $u Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- 700 1_
- $a Borovička, Jan $u Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.
- 700 1_
- $a Hršelová, Hana $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- 700 1_
- $a Forczek, Sándor T $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. Isotope Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- 700 1_
- $a Slámová, Kristýna $u Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- 700 1_
- $a Řezanka, Tomáš $u Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- 700 1_
- $a Rozmoš, Martin $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- 700 1_
- $a Bukovská, Petra $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. $7 xx0326030
- 700 1_
- $a Gryndler, Milan $u Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic.
- 773 0_
- $w MED00180395 $t Mycorrhiza $x 1432-1890 $g Roč. 30, č. 1 (2020), s. 63-77
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32062707 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20241126150339 $b ABA008
- 999 __
- $a ok $b bmc $g 1524412 $s 1095610
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 30 $c 1 $d 63-77 $e 20200215 $i 1432-1890 $m Mycorrhiza $n Mycorrhiza $x MED00180395
- GRA __
- $a P504-12-1665 $p Grantová Agentura České Republiky (CZ)
- GRA __
- $a 18-04892S $p Grantová Agentura České Republiky (CZ)
- GRA __
- $a LK11224 $p Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
- GRA __
- $a RVO61388971 $p Akademie Věd České Republiky
- GRA __
- $a RVO 67985831 $p Akademie Věd České Republiky (CZ)
- LZP __
- $a Pubmed-20200511