-
Je něco špatně v tomto záznamu ?
The effect of inhibition on rate code efficiency indicators
T. Barta, L. Kostal,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-06-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- adenosintrifosfát metabolismus MeSH
- akční potenciály fyziologie MeSH
- excitační postsynaptické potenciály fyziologie MeSH
- membránové potenciály fyziologie MeSH
- modely neurologické * MeSH
- nervové vedení fyziologie MeSH
- nervový přenos fyziologie MeSH
- nervový útlum fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace MeSH
- poměr signál - šum MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005650
- 003
- CZ-PrNML
- 005
- 20200526083739.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1007545 $2 doi
- 035 __
- $a (PubMed)31790384
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Barta, Tomas $u Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. Charles University, First Medical Faculty, Prague, Czech Republic. Institute of Ecology and Environmental Sciences, INRA, Versailles, France.
- 245 14
- $a The effect of inhibition on rate code efficiency indicators / $c T. Barta, L. Kostal,
- 520 9_
- $a In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a excitační postsynaptické potenciály $x fyziologie $7 D019706
- 650 _2
- $a membránové potenciály $x fyziologie $7 D008564
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a nervové vedení $x fyziologie $7 D009431
- 650 _2
- $a nervový útlum $x fyziologie $7 D009433
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 _2
- $a nervový přenos $x fyziologie $7 D009435
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kostal, Lubomir $u Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 15, č. 12 (2019), s. e1007545
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31790384 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200526083736 $b ABA008
- 999 __
- $a ok $b bmc $g 1524508 $s 1095706
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 15 $c 12 $d e1007545 $e 20191202 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20200511