-
Something wrong with this record ?
The effect of inhibition on rate code efficiency indicators
T. Barta, L. Kostal,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 2005
Public Library of Science (PLoS)
from 2005
PubMed Central
from 2005
Europe PubMed Central
from 2005
ProQuest Central
from 2005-06-01
Open Access Digital Library
from 2005-01-01
Open Access Digital Library
from 2005-06-01
Open Access Digital Library
from 2005-01-01
Medline Complete (EBSCOhost)
from 2005-06-01
Health & Medicine (ProQuest)
from 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
from 2005
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Action Potentials physiology MeSH
- Excitatory Postsynaptic Potentials physiology MeSH
- Membrane Potentials physiology MeSH
- Models, Neurological * MeSH
- Neural Conduction physiology MeSH
- Synaptic Transmission physiology MeSH
- Neural Inhibition physiology MeSH
- Neurons physiology MeSH
- Computer Simulation MeSH
- Signal-To-Noise Ratio MeSH
- Computational Biology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005650
- 003
- CZ-PrNML
- 005
- 20200526083739.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1007545 $2 doi
- 035 __
- $a (PubMed)31790384
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Barta, Tomas $u Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. Charles University, First Medical Faculty, Prague, Czech Republic. Institute of Ecology and Environmental Sciences, INRA, Versailles, France.
- 245 14
- $a The effect of inhibition on rate code efficiency indicators / $c T. Barta, L. Kostal,
- 520 9_
- $a In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a excitační postsynaptické potenciály $x fyziologie $7 D019706
- 650 _2
- $a membránové potenciály $x fyziologie $7 D008564
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a nervové vedení $x fyziologie $7 D009431
- 650 _2
- $a nervový útlum $x fyziologie $7 D009433
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 _2
- $a nervový přenos $x fyziologie $7 D009435
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kostal, Lubomir $u Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 15, č. 12 (2019), s. e1007545
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31790384 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200526083736 $b ABA008
- 999 __
- $a ok $b bmc $g 1524508 $s 1095706
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 15 $c 12 $d e1007545 $e 20191202 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20200511