• Je něco špatně v tomto záznamu ?

Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix

V. Kuznetsova, MA. Dominguez-Martin, H. Bao, S. Gupta, M. Sutter, M. Kloz, M. Rebarz, M. Přeček, Y. Chen, CJ. Petzold, CY. Ralston, CA. Kerfeld, T. Polívka,

. 2020 ; 1861 (2) : 148120. [pub] 20191114

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20005690

Grantová podpora
R01 GM126218 NIGMS NIH HHS - United States

The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005690
003      
CZ-PrNML
005      
20200527102913.0
007      
ta
008      
200511s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2019.148120 $2 doi
035    __
$a (PubMed)31734194
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Kuznetsova, Valentyna $u Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
245    10
$a Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix / $c V. Kuznetsova, MA. Dominguez-Martin, H. Bao, S. Gupta, M. Sutter, M. Kloz, M. Rebarz, M. Přeček, Y. Chen, CJ. Petzold, CY. Ralston, CA. Kerfeld, T. Polívka,
520    9_
$a The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.
650    _2
$a bakteriální proteiny $x chemie $7 D001426
650    _2
$a sinice $x chemie $7 D000458
650    _2
$a fykobilizomy $x chemie $7 D045524
650    _2
$a fluorescenční spektrometrie $7 D013050
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Dominguez-Martin, Maria Agustina $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
700    1_
$a Bao, Han $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
700    1_
$a Gupta, Sayan $u Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
700    1_
$a Sutter, Markus $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
700    1_
$a Kloz, Miroslav $u ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic.
700    1_
$a Rebarz, Mateusz $u ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic.
700    1_
$a Přeček, Martin $u ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic.
700    1_
$a Chen, Yan $u Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
700    1_
$a Petzold, Christopher J $u Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
700    1_
$a Ralston, Corie Y $u Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
700    1_
$a Kerfeld, Cheryl A $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
700    1_
$a Polívka, Tomáš $u Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic. Electronic address: tpolivka@jcu.cz.
773    0_
$w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1861, č. 2 (2020), s. 148120
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31734194 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200527102910 $b ABA008
999    __
$a ok $b bmc $g 1524548 $s 1095746
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 1861 $c 2 $d 148120 $e 20191114 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
GRA    __
$a R01 GM126218 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...