-
Je něco špatně v tomto záznamu ?
Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix
V. Kuznetsova, MA. Dominguez-Martin, H. Bao, S. Gupta, M. Sutter, M. Kloz, M. Rebarz, M. Přeček, Y. Chen, CJ. Petzold, CY. Ralston, CA. Kerfeld, T. Polívka,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM126218
NIGMS NIH HHS - United States
- MeSH
- bakteriální proteiny chemie MeSH
- fluorescenční spektrometrie MeSH
- fykobilizomy chemie MeSH
- sinice chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.
Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI 48824 USA
MSU DOE Plant Research Laboratory Michigan State University East Lansing MI 48824 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005690
- 003
- CZ-PrNML
- 005
- 20200527102913.0
- 007
- ta
- 008
- 200511s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2019.148120 $2 doi
- 035 __
- $a (PubMed)31734194
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Kuznetsova, Valentyna $u Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
- 245 10
- $a Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix / $c V. Kuznetsova, MA. Dominguez-Martin, H. Bao, S. Gupta, M. Sutter, M. Kloz, M. Rebarz, M. Přeček, Y. Chen, CJ. Petzold, CY. Ralston, CA. Kerfeld, T. Polívka,
- 520 9_
- $a The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.
- 650 _2
- $a bakteriální proteiny $x chemie $7 D001426
- 650 _2
- $a sinice $x chemie $7 D000458
- 650 _2
- $a fykobilizomy $x chemie $7 D045524
- 650 _2
- $a fluorescenční spektrometrie $7 D013050
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Dominguez-Martin, Maria Agustina $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
- 700 1_
- $a Bao, Han $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
- 700 1_
- $a Gupta, Sayan $u Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- 700 1_
- $a Sutter, Markus $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- 700 1_
- $a Kloz, Miroslav $u ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic.
- 700 1_
- $a Rebarz, Mateusz $u ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic.
- 700 1_
- $a Přeček, Martin $u ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic.
- 700 1_
- $a Chen, Yan $u Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- 700 1_
- $a Petzold, Christopher J $u Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- 700 1_
- $a Ralston, Corie Y $u Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- 700 1_
- $a Kerfeld, Cheryl A $u MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
- 700 1_
- $a Polívka, Tomáš $u Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic. Electronic address: tpolivka@jcu.cz.
- 773 0_
- $w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1861, č. 2 (2020), s. 148120
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31734194 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200527102910 $b ABA008
- 999 __
- $a ok $b bmc $g 1524548 $s 1095746
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 1861 $c 2 $d 148120 $e 20191114 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
- GRA __
- $a R01 GM126218 $p NIGMS NIH HHS $2 United States
- LZP __
- $a Pubmed-20200511