• Je něco špatně v tomto záznamu ?

Genomic Structure of Hstx2 Modifier of Prdm9-Dependent Hybrid Male Sterility in Mice

D. Lustyk, S. Kinský, KK. Ullrich, M. Yancoskie, L. Kašíková, V. Gergelits, R. Sedlacek, YF. Chan, L. Odenthal-Hesse, J. Forejt, P. Jansa,

. 2019 ; 213 (3) : 1047-1063. [pub] 20190927

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20005850
E-zdroje Online Plný text

NLK Free Medical Journals od 1916 do Před 6 měsíci
Freely Accessible Science Journals od 1916 do Před 1 rokem
Europe PubMed Central od 1916 do Před 1 rokem
ProQuest Central od 2004-10-01 do 2020-12-31
Open Access Digital Library od 1916-01-01
Open Access Digital Library od 1916-01-01
Medline Complete (EBSCOhost) od 1916-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2004-10-01 do 2020-12-31
Family Health Database (ProQuest) od 2004-10-01 do 2020-12-31
Public Health Database (ProQuest) od 2004-10-01 do 2020-12-31

F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005850
003      
CZ-PrNML
005      
20200528090413.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1534/genetics.119.302554 $2 doi
035    __
$a (PubMed)31562180
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lustyk, Diana $u Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic. Faculty of Science, Charles University, Prague CZ-12000, Czech Republic.
245    10
$a Genomic Structure of Hstx2 Modifier of Prdm9-Dependent Hybrid Male Sterility in Mice / $c D. Lustyk, S. Kinský, KK. Ullrich, M. Yancoskie, L. Kašíková, V. Gergelits, R. Sedlacek, YF. Chan, L. Odenthal-Hesse, J. Forejt, P. Jansa,
520    9_
$a F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
650    _2
$a zvířata $7 D000818
650    12
$a modifikátorové geny $7 D060045
650    _2
$a histonlysin-N-methyltransferasa $x genetika $7 D011495
650    _2
$a homologní rekombinace $7 D059765
650    _2
$a mužská infertilita $x genetika $7 D007248
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a meióza $7 D008540
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a mikro RNA $x genetika $7 D035683
650    12
$a polymorfismus genetický $7 D011110
650    _2
$a chromozom X $x genetika $7 D014960
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kinský, Slavomír $u The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic.
700    1_
$a Ullrich, Kristian Karsten $u Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany.
700    1_
$a Yancoskie, Michelle $u Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany.
700    1_
$a Kašíková, Lenka $u Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic.
700    1_
$a Gergelits, Vaclav $u Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic.
700    1_
$a Sedlacek, Radislav $u The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic.
700    1_
$a Chan, Yingguang Frank $u Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany.
700    1_
$a Odenthal-Hesse, Linda $u Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany.
700    1_
$a Forejt, Jiri $u Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic pjansa@img.cas.cz jforejt@img.cas.cz.
700    1_
$a Jansa, Petr $u Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic pjansa@img.cas.cz jforejt@img.cas.cz.
773    0_
$w MED00001904 $t Genetics $x 1943-2631 $g Roč. 213, č. 3 (2019), s. 1047-1063
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31562180 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200528090410 $b ABA008
999    __
$a ok $b bmc $g 1524708 $s 1095906
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 213 $c 3 $d 1047-1063 $e 20190927 $i 1943-2631 $m Genetics $n Genetics $x MED00001904
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...