• Je něco špatně v tomto záznamu ?

The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet

M. Ignatz, JE. Hourston, V. Turečková, M. Strnad, J. Meinhard, U. Fischer, T. Steinbrecher, G. Leubner-Metzger,

. 2019 ; 250 (5) : 1717-1729. [pub] 20190814

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006039

Grantová podpora
direct funding from industry KWS SAAT SE
BB/M000583/1 Biotechnology and Biological Sciences Research Council - United Kingdom
CZ.02.1.01/0.0/0.0/16_019/0000827 ERDF

E-zdroje Online Plný text

NLK ProQuest Central od 2002-11-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 1999-11-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-11-01 do Před 1 rokem

MAIN CONCLUSION: Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006039
003      
CZ-PrNML
005      
20200518132258.0
007      
ta
008      
200511s2019 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00425-019-03257-5 $2 doi
035    __
$a (PubMed)31414204
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Ignatz, Michael $u Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
245    14
$a The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet / $c M. Ignatz, JE. Hourston, V. Turečková, M. Strnad, J. Meinhard, U. Fischer, T. Steinbrecher, G. Leubner-Metzger,
520    9_
$a MAIN CONCLUSION: Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.
650    _2
$a kyselina abscisová $x metabolismus $7 D000040
650    _2
$a Beta vulgaris $x růst a vývoj $x fyziologie $7 D027461
650    _2
$a biochemie $7 D001671
650    _2
$a klíčení $7 D018525
650    _2
$a regulátory růstu rostlin $x metabolismus $7 D010937
650    _2
$a semena rostlinná $x růst a vývoj $x fyziologie $7 D012639
650    _2
$a tandemová hmotnostní spektrometrie $7 D053719
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hourston, James E $u Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
700    1_
$a Turečková, Veronika $u Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic.
700    1_
$a Strnad, Miroslav $u Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic.
700    1_
$a Meinhard, Juliane $u KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany.
700    1_
$a Fischer, Uwe $u KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany.
700    1_
$a Steinbrecher, Tina $u Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
700    1_
$a Leubner-Metzger, Gerhard $u Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK. gerhard.leubner@rhul.ac.uk. Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic. gerhard.leubner@rhul.ac.uk.
773    0_
$w MED00005789 $t Planta $x 1432-2048 $g Roč. 250, č. 5 (2019), s. 1717-1729
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31414204 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200518132258 $b ABA008
999    __
$a ok $b bmc $g 1524897 $s 1096095
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 250 $c 5 $d 1717-1729 $e 20190814 $i 1432-2048 $m Planta $n Planta $x MED00005789
GRA    __
$a direct funding from industry $p KWS SAAT SE
GRA    __
$a BB/M000583/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a CZ.02.1.01/0.0/0.0/16_019/0000827 $p ERDF
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...