• Je něco špatně v tomto záznamu ?

Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects

L. Socrier, M. Rosselin, AM. Gomez Giraldo, B. Chantemargue, F. Di Meo, P. Trouillas, G. Durand, S. Morandat,

. 2019 ; 1861 (8) : 1489-1501. [pub] 20190624

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006210

Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006210
003      
CZ-PrNML
005      
20200527102825.0
007      
ta
008      
200511s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbamem.2019.06.008 $2 doi
035    __
$a (PubMed)31247162
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Socrier, Larissa $u Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France. Electronic address: las218@lehigh.edu.
245    10
$a Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects / $c L. Socrier, M. Rosselin, AM. Gomez Giraldo, B. Chantemargue, F. Di Meo, P. Trouillas, G. Durand, S. Morandat,
520    9_
$a Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.
650    _2
$a antioxidancia $x farmakologie $7 D000975
650    _2
$a chromany (dihydrobenzopyrany) $x chemie $7 D002839
650    _2
$a synergismus léků $7 D004357
650    _2
$a fluor $x chemie $7 D005461
650    _2
$a peroxidace lipidů $7 D015227
650    _2
$a membránové lipidy $x chemie $7 D008563
650    _2
$a membrány umělé $7 D008567
650    _2
$a oxidy dusíku $x chemie $7 D009589
650    _2
$a oxidace-redukce $7 D010084
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Rosselin, Marie $u Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France.
700    1_
$a Gomez Giraldo, Ana Milena $u Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France.
700    1_
$a Chantemargue, Benjamin $u INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
700    1_
$a Di Meo, Florent $u INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France.
700    1_
$a Trouillas, Patrick $u INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
700    1_
$a Durand, Grégory $u Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France.
700    1_
$a Morandat, Sandrine $u Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France.
773    0_
$w MED00000713 $t Biochimica et biophysica acta. Biomembranes $x 1879-2642 $g Roč. 1861, č. 8 (2019), s. 1489-1501
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31247162 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200527102822 $b ABA008
999    __
$a ok $b bmc $g 1525068 $s 1096266
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 1861 $c 8 $d 1489-1501 $e 20190624 $i 1879-2642 $m Biochimica et biophysica acta. Biomembranes $n Biochem Biophys Acta $x MED00000713
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...