-
Je něco špatně v tomto záznamu ?
Intracellular mechanisms of fungal space searching in microenvironments
M. Held, O. Kašpar, C. Edwards, DV. Nicolau,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
od 1915 do Před 6 měsíci
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-01
Open Access Digital Library
od 1915-01-15
PubMed
31213536
DOI
10.1073/pnas.1816423116
Knihovny.cz E-zdroje
- MeSH
- časosběrné zobrazování MeSH
- hyfy růst a vývoj fyziologie MeSH
- mikrotubuly fyziologie MeSH
- Neurospora crassa růst a vývoj fyziologie MeSH
- optické zobrazování MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
Department of Bioengineering Faculty of Engineering McGill University Montreal QC H3A 0C3 Canada
School of Biological Sciences University of Liverpool L69 7ZB Liverpool United Kingdom
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006242
- 003
- CZ-PrNML
- 005
- 20200518132446.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1816423116 $2 doi
- 035 __
- $a (PubMed)31213536
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Held, Marie $u Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom.
- 245 10
- $a Intracellular mechanisms of fungal space searching in microenvironments / $c M. Held, O. Kašpar, C. Edwards, DV. Nicolau,
- 520 9_
- $a Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
- 650 _2
- $a životní prostředí $7 D004777
- 650 _2
- $a hyfy $x růst a vývoj $x fyziologie $7 D025301
- 650 _2
- $a mikrotubuly $x fyziologie $7 D008870
- 650 _2
- $a Neurospora crassa $x růst a vývoj $x fyziologie $7 D009492
- 650 _2
- $a optické zobrazování $7 D061848
- 650 _2
- $a časosběrné zobrazování $7 D059008
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Kašpar, Ondřej $u Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0C3, Canada. Department of Chemical Engineering, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic.
- 700 1_
- $a Edwards, Clive $u School of Biological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom.
- 700 1_
- $a Nicolau, Dan V $u Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom; dan.nicolau@mcgill.ca. Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 116, č. 27 (2019), s. 13543-13552
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31213536 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132445 $b ABA008
- 999 __
- $a ok $b bmc $g 1525100 $s 1096298
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 116 $c 27 $d 13543-13552 $e 20190618 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20200511