• Je něco špatně v tomto záznamu ?

Intracellular mechanisms of fungal space searching in microenvironments

M. Held, O. Kašpar, C. Edwards, DV. Nicolau,

. 2019 ; 116 (27) : 13543-13552. [pub] 20190618

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006242
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-01
Open Access Digital Library od 1915-01-15

Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006242
003      
CZ-PrNML
005      
20200518132446.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1816423116 $2 doi
035    __
$a (PubMed)31213536
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Held, Marie $u Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom.
245    10
$a Intracellular mechanisms of fungal space searching in microenvironments / $c M. Held, O. Kašpar, C. Edwards, DV. Nicolau,
520    9_
$a Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
650    _2
$a životní prostředí $7 D004777
650    _2
$a hyfy $x růst a vývoj $x fyziologie $7 D025301
650    _2
$a mikrotubuly $x fyziologie $7 D008870
650    _2
$a Neurospora crassa $x růst a vývoj $x fyziologie $7 D009492
650    _2
$a optické zobrazování $7 D061848
650    _2
$a časosběrné zobrazování $7 D059008
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Kašpar, Ondřej $u Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0C3, Canada. Department of Chemical Engineering, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic.
700    1_
$a Edwards, Clive $u School of Biological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom.
700    1_
$a Nicolau, Dan V $u Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom; dan.nicolau@mcgill.ca. Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 116, č. 27 (2019), s. 13543-13552
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31213536 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200518132445 $b ABA008
999    __
$a ok $b bmc $g 1525100 $s 1096298
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 116 $c 27 $d 13543-13552 $e 20190618 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...