-
Je něco špatně v tomto záznamu ?
Positive impact of dynamic seeding of mesenchymal stem cells on bone-like biodegradable scaffolds with increased content of calcium phosphate nanoparticles
P. Sauerova, T. Suchy, M. Supova, M. Bartos, J. Klima, J. Juhasova, S. Juhas, T. Kubikova, Z. Tonar, R. Sedlacek, M. Piola, GB. Fiore, M. Soncini, M. Hubalek Kalbacova,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
Grantová podpora
15-25813A
Ministry of Health of the Czech Republic
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- buněčná diferenciace MeSH
- fosforečnany vápenaté metabolismus MeSH
- kolagen chemie MeSH
- kosti a kostní tkáň chemie MeSH
- kultivované buňky MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- nanočástice MeSH
- osteogeneze účinky léků MeSH
- prasata MeSH
- regenerativní lékařství MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
One of the main aims of bone tissue engineering, regenerative medicine and cell therapy is development of an optimal artificial environment (scaffold) that can trigger a favorable response within the host tissue, it is well colonized by resident cells of organism and ideally, it can be in vitro pre-colonized by cells of interest to intensify the process of tissue regeneration. The aim of this study was to develop an effective tool for regenerative medicine, which combines the optimal bone-like scaffold and colonization technique suitable for cell application. Accordingly, this study includes material (physical, chemical and structural) and in vitro biological evaluation of scaffolds prior to in vivo study. Thus, porosity, permeability or elasticity of two types of bone-like scaffolds differing in the ratio of collagen type I and natural calcium phosphate nanoparticles (bCaP) were determined, then analyzes of scaffold interaction with mesenchymal stem cells (MSCs) were performed. Simultaneously, dynamic seeding using a perfusion bioreactor followed by static cultivation was compared with standard static cultivation for the whole period of cultivation. In summary, cell colonization ability was estimated by determination of cell distribution within the scaffold (number, depth and homogeneity), matrix metalloproteinase activity and gene expression analysis of signaling molecules and differentiation markers. Results showed, the used dynamic colonization technique together with the newly-developed collagen-based scaffold with high content of bCaP to be an effective combined tool for producing bone grafts for bone implantology and regenerative medicine.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006273
- 003
- CZ-PrNML
- 005
- 20200526085503.0
- 007
- ta
- 008
- 200511s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11033-019-04903-7 $2 doi
- 035 __
- $a (PubMed)31183678
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Sauerova, Pavla $u Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic. Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
- 245 10
- $a Positive impact of dynamic seeding of mesenchymal stem cells on bone-like biodegradable scaffolds with increased content of calcium phosphate nanoparticles / $c P. Sauerova, T. Suchy, M. Supova, M. Bartos, J. Klima, J. Juhasova, S. Juhas, T. Kubikova, Z. Tonar, R. Sedlacek, M. Piola, GB. Fiore, M. Soncini, M. Hubalek Kalbacova,
- 520 9_
- $a One of the main aims of bone tissue engineering, regenerative medicine and cell therapy is development of an optimal artificial environment (scaffold) that can trigger a favorable response within the host tissue, it is well colonized by resident cells of organism and ideally, it can be in vitro pre-colonized by cells of interest to intensify the process of tissue regeneration. The aim of this study was to develop an effective tool for regenerative medicine, which combines the optimal bone-like scaffold and colonization technique suitable for cell application. Accordingly, this study includes material (physical, chemical and structural) and in vitro biological evaluation of scaffolds prior to in vivo study. Thus, porosity, permeability or elasticity of two types of bone-like scaffolds differing in the ratio of collagen type I and natural calcium phosphate nanoparticles (bCaP) were determined, then analyzes of scaffold interaction with mesenchymal stem cells (MSCs) were performed. Simultaneously, dynamic seeding using a perfusion bioreactor followed by static cultivation was compared with standard static cultivation for the whole period of cultivation. In summary, cell colonization ability was estimated by determination of cell distribution within the scaffold (number, depth and homogeneity), matrix metalloproteinase activity and gene expression analysis of signaling molecules and differentiation markers. Results showed, the used dynamic colonization technique together with the newly-developed collagen-based scaffold with high content of bCaP to be an effective combined tool for producing bone grafts for bone implantology and regenerative medicine.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kosti a kostní tkáň $x chemie $7 D001842
- 650 _2
- $a fosforečnany vápenaté $x metabolismus $7 D002130
- 650 _2
- $a buněčná diferenciace $7 D002454
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a kolagen $x chemie $7 D003094
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a transplantace mezenchymálních kmenových buněk $x metody $7 D045164
- 650 _2
- $a mezenchymální kmenové buňky $x metabolismus $7 D059630
- 650 _2
- $a nanočástice $7 D053758
- 650 _2
- $a osteogeneze $x účinky léků $7 D010012
- 650 _2
- $a regenerativní lékařství $7 D044968
- 650 _2
- $a prasata $7 D013552
- 650 _2
- $a tkáňové inženýrství $x metody $7 D023822
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Suchy, Tomas $u Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, Prague, 182 09, Czech Republic. Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, 166 07, Czech Republic.
- 700 1_
- $a Supova, Monika $u Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, Prague, 182 09, Czech Republic.
- 700 1_
- $a Bartos, Martin $u Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic. Institute of Dental Medicine, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, Prague, 121 08, Czech Republic.
- 700 1_
- $a Klima, Jiri $u Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, Libechov, 277 21, Czech Republic.
- 700 1_
- $a Juhasova, Jana $u Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, Libechov, 277 21, Czech Republic.
- 700 1_
- $a Juhas, Stefan $u Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, Libechov, 277 21, Czech Republic.
- 700 1_
- $a Kubikova, Tereza $u Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 323 00, Czech Republic. Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Plzeň, 301 00, Czech Republic.
- 700 1_
- $a Tonar, Zbynek $u Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 323 00, Czech Republic. Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Plzeň, 301 00, Czech Republic.
- 700 1_
- $a Sedlacek, Radek $u Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, 166 07, Czech Republic.
- 700 1_
- $a Piola, Marco $u Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 201 33, Milan, Italy.
- 700 1_
- $a Fiore, Gianfranco Beniamino $u Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 201 33, Milan, Italy.
- 700 1_
- $a Soncini, Monica $u Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 201 33, Milan, Italy.
- 700 1_
- $a Hubalek Kalbacova, Marie $u Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic. Marie.Kalbacova@lf1.cuni.cz. Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 323 00, Czech Republic. Marie.Kalbacova@lf1.cuni.cz.
- 773 0_
- $w MED00003392 $t Molecular biology reports $x 1573-4978 $g Roč. 46, č. 4 (2019), s. 4483-4500
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31183678 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200526085459 $b ABA008
- 999 __
- $a ok $b bmc $g 1525131 $s 1096329
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 46 $c 4 $d 4483-4500 $e 20190610 $i 1573-4978 $m Molecular biology reports $n Mol Biol Rep $x MED00003392
- GRA __
- $a 15-25813A $p Ministry of Health of the Czech Republic
- LZP __
- $a Pubmed-20200511