Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks

P. Škrabánek, A. Zahradníková,

. 2019 ; 14 (5) : e0216720. [pub] 20190530

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006321

Computer assisted image acquisition techniques, including confocal microscopy, require efficient tools for an automatic sorting of vast amount of generated image data. The complexity of the classification process, absence of adequate tools, and insufficient amount of reference data has made the automated processing of images challenging. Mastering of this issue would allow implementation of statistical analysis in research areas such as in research on formation of t-tubules in cardiac myocytes. We developed a system aimed at automatic assessment of cardiomyocyte development stages (SAACS). The system classifies confocal images of cardiomyocytes with fluorescent dye stained sarcolemma. We based SAACS on a densely connected convolutional network (DenseNet) topology. We created a set of labelled source images, proposed an appropriate data augmentation technique and designed a class probability graph. We showed that the DenseNet topology, in combination with the augmentation technique is suitable for the given task, and that high-resolution images are instrumental for image categorization. SAACS, in combination with the automatic high-throughput confocal imaging, will allow application of statistical analysis in the research of the tubular system development or remodelling and loss.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006321
003      
CZ-PrNML
005      
20200518132536.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0216720 $2 doi
035    __
$a (PubMed)31145728
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Škrabánek, Pavel $u Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic.
245    10
$a Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks / $c P. Škrabánek, A. Zahradníková,
520    9_
$a Computer assisted image acquisition techniques, including confocal microscopy, require efficient tools for an automatic sorting of vast amount of generated image data. The complexity of the classification process, absence of adequate tools, and insufficient amount of reference data has made the automated processing of images challenging. Mastering of this issue would allow implementation of statistical analysis in research areas such as in research on formation of t-tubules in cardiac myocytes. We developed a system aimed at automatic assessment of cardiomyocyte development stages (SAACS). The system classifies confocal images of cardiomyocytes with fluorescent dye stained sarcolemma. We based SAACS on a densely connected convolutional network (DenseNet) topology. We created a set of labelled source images, proposed an appropriate data augmentation technique and designed a class probability graph. We showed that the DenseNet topology, in combination with the augmentation technique is suitable for the given task, and that high-resolution images are instrumental for image categorization. SAACS, in combination with the automatic high-throughput confocal imaging, will allow application of statistical analysis in the research of the tubular system development or remodelling and loss.
650    _2
$a zvířata $7 D000818
650    _2
$a umělá inteligence $7 D001185
650    _2
$a buněčná diferenciace $7 D002454
650    _2
$a fluorescenční barviva $7 D005456
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a strojové učení $7 D000069550
650    _2
$a konfokální mikroskopie $x metody $7 D018613
650    _2
$a modely kardiovaskulární $7 D008955
650    _2
$a kardiomyocyty $x cytologie $x ultrastruktura $7 D032383
650    _2
$a neuronové sítě $7 D016571
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a sarkolema $x ultrastruktura $7 D012508
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zahradníková, Alexandra $u Institute of Molecular Physiology and Genetics, Centre of Biosciences SAS, Bratislava, Slovakia. Department of Cellular Cardiology, Inst. of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 5 (2019), s. e0216720
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31145728 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200518132535 $b ABA008
999    __
$a ok $b bmc $g 1525179 $s 1096377
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 14 $c 5 $d e0216720 $e 20190530 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...