-
Je něco špatně v tomto záznamu ?
Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides
J. Mareš, J. Hájek, P. Urajová, A. Kust, J. Jokela, K. Saurav, T. Galica, K. Čapková, A. Mattila, E. Haapaniemi, P. Permi, I. Mysterud, OM. Skulberg, J. Karlsen, DP. Fewer, K. Sivonen, HH. Tønnesen, P. Hrouzek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1976 do Před 6 měsíci
PubMed Central
od 1976 do Před 6 měsíci
Europe PubMed Central
od 1976 do Před 6 měsíci
Open Access Digital Library
od 1953-01-01
PubMed
30504214
DOI
10.1128/aem.02675-18
Knihovny.cz E-zdroje
- MeSH
- Anabaena genetika MeSH
- antifungální látky MeSH
- antiinfekční látky MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny genetika MeSH
- cyklické peptidy biosyntéza chemie genetika MeSH
- lipopeptidy biosyntéza chemie genetika farmakologie MeSH
- multigenová rodina MeSH
- peptidsynthasy genetika MeSH
- polyketidsynthasy genetika MeSH
- sinice genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.
Department of Biosciences University of Oslo Oslo Norway
Department of Chemistry University of Jyväskylä Jyväskylä Finland
Department of Microbiology Viikki Biocenter University of Helsinki Helsinki Finland
Norwegian Institute for Water Research Oslo Norway
School of Pharmacy University of Oslo Oslo Norway
The Czech Academy of Sciences Institute of Microbiology Center Algatech Třeboň Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006705
- 003
- CZ-PrNML
- 005
- 20200521091404.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1128/AEM.02675-18 $2 doi
- 035 __
- $a (PubMed)30504214
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mareš, Jan $u The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic. The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
- 245 10
- $a Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides / $c J. Mareš, J. Hájek, P. Urajová, A. Kust, J. Jokela, K. Saurav, T. Galica, K. Čapková, A. Mattila, E. Haapaniemi, P. Permi, I. Mysterud, OM. Skulberg, J. Karlsen, DP. Fewer, K. Sivonen, HH. Tønnesen, P. Hrouzek,
- 520 9_
- $a Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.
- 650 _2
- $a Anabaena $x genetika $7 D017033
- 650 _2
- $a antiinfekční látky $7 D000890
- 650 _2
- $a antifungální látky $7 D000935
- 650 _2
- $a bakteriální proteiny $x genetika $7 D001426
- 650 _2
- $a sinice $x genetika $x metabolismus $7 D000458
- 650 _2
- $a bakteriální geny $x genetika $7 D005798
- 650 _2
- $a lipopeptidy $x biosyntéza $x chemie $x genetika $x farmakologie $7 D055666
- 650 _2
- $a multigenová rodina $7 D005810
- 650 _2
- $a peptidsynthasy $x genetika $7 D010453
- 650 _2
- $a cyklické peptidy $x biosyntéza $x chemie $x genetika $7 D010456
- 650 _2
- $a polyketidsynthasy $x genetika $7 D048630
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hájek, Jan $u The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
- 700 1_
- $a Urajová, Petra $u The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic.
- 700 1_
- $a Kust, Andreja $u The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic. The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
- 700 1_
- $a Jokela, Jouni $u Department of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Saurav, Kumar $u The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic.
- 700 1_
- $a Galica, Tomáš $u The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
- 700 1_
- $a Čapková, Kateřina $u The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic.
- 700 1_
- $a Mattila, Antti $u Department of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Haapaniemi, Esa $u Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland. Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
- 700 1_
- $a Permi, Perttu $u Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland.
- 700 1_
- $a Mysterud, Ivar $u Department of Biosciences, University of Oslo, Oslo, Norway.
- 700 1_
- $a Skulberg, Olav M $u Norwegian Institute for Water Research (NIVA), Oslo, Norway.
- 700 1_
- $a Karlsen, Jan $u School of Pharmacy, University of Oslo, Oslo, Norway.
- 700 1_
- $a Fewer, David P $u Department of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Sivonen, Kaarina $u Department of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Tønnesen, Hanne Hjorth $u School of Pharmacy, University of Oslo, Oslo, Norway.
- 700 1_
- $a Hrouzek, Pavel $u The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic hrouzekp@gmail.com. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
- 773 0_
- $w MED00000487 $t Applied and environmental microbiology $x 1098-5336 $g Roč. 85, č. 4 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30504214 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200521091400 $b ABA008
- 999 __
- $a ok $b bmc $g 1525563 $s 1096761
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 85 $c 4 $e 20190206 $i 1098-5336 $m Applied and environmental microbiology $n Appl Environ Microbiol $x MED00000487
- LZP __
- $a Pubmed-20200511