Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

On the uniqueness of epidemic models fitting a normalized curve of removed individuals

AH. Bilge, F. Samanlioglu, O. Ergonul,

. 2015 ; 71 (4) : 767-794. [pub] 20141014

Language English Country Germany

Document type Journal Article

E-resources Online Full text

NLK ProQuest Central from 1997-11-01 to 1 year ago
Medline Complete (EBSCOhost) from 2005-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-11-01 to 1 year ago

The susceptible-infected-removed (SIR) and the susceptible-exposed-infected-removed (SEIR) epidemic models with constant parameters are adequate for describing the time evolution of seasonal diseases for which available data usually consist of fatality reports. The problems associated with the determination of system parameters starts with the inference of the number of removed individuals from fatality data, because the infection to death period may depend on health care factors. Then, one encounters numerical sensitivity problems for the determination of the system parameters from a correct but noisy representative of the number of removed individuals. Finally as the available data is necessarily a normalized one, the models fitting this data may not be unique. We prove that the parameters of the (SEIR) model cannot be determined from the knowledge of a normalized curve of "Removed" individuals and we show that the proportion of removed individuals, [Formula: see text], is invariant under the interchange of the incubation and infection periods and corresponding scalings of the contact rate. On the other hand we prove that the SIR model fitting a normalized curve of removed individuals is unique and we give an implicit relation for the system parameters in terms of the values of [Formula: see text] and [Formula: see text], where [Formula: see text] is the steady state value of [Formula: see text] and [Formula: see text] and [Formula: see text] are the values of [Formula: see text] and its derivative at the inflection point [Formula: see text] of [Formula: see text]. We use these implicit relations to provide a robust method for the estimation of the system parameters and we apply this procedure to the fatality data for the H1N1 epidemic in the Czech Republic during 2009. We finally discuss the inference of the number of removed individuals from observational data, using a clinical survey conducted at major hospitals in Istanbul, Turkey, during 2009 H1N1 epidemic.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20014757
003      
CZ-PrNML
005      
20200929121146.0
007      
ta
008      
200922s2015 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00285-014-0838-z $2 doi
035    __
$a (PubMed)25312413
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Bilge, Ayse Humeyra $u Department of Industrial Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey, ayse.bilge@khas.edu.tr.
245    10
$a On the uniqueness of epidemic models fitting a normalized curve of removed individuals / $c AH. Bilge, F. Samanlioglu, O. Ergonul,
520    9_
$a The susceptible-infected-removed (SIR) and the susceptible-exposed-infected-removed (SEIR) epidemic models with constant parameters are adequate for describing the time evolution of seasonal diseases for which available data usually consist of fatality reports. The problems associated with the determination of system parameters starts with the inference of the number of removed individuals from fatality data, because the infection to death period may depend on health care factors. Then, one encounters numerical sensitivity problems for the determination of the system parameters from a correct but noisy representative of the number of removed individuals. Finally as the available data is necessarily a normalized one, the models fitting this data may not be unique. We prove that the parameters of the (SEIR) model cannot be determined from the knowledge of a normalized curve of "Removed" individuals and we show that the proportion of removed individuals, [Formula: see text], is invariant under the interchange of the incubation and infection periods and corresponding scalings of the contact rate. On the other hand we prove that the SIR model fitting a normalized curve of removed individuals is unique and we give an implicit relation for the system parameters in terms of the values of [Formula: see text] and [Formula: see text], where [Formula: see text] is the steady state value of [Formula: see text] and [Formula: see text] and [Formula: see text] are the values of [Formula: see text] and its derivative at the inflection point [Formula: see text] of [Formula: see text]. We use these implicit relations to provide a robust method for the estimation of the system parameters and we apply this procedure to the fatality data for the H1N1 epidemic in the Czech Republic during 2009. We finally discuss the inference of the number of removed individuals from observational data, using a clinical survey conducted at major hospitals in Istanbul, Turkey, during 2009 H1N1 epidemic.
650    _2
$a počítačová simulace $7 D003198
650    _2
$a epidemie $x statistika a číselné údaje $7 D058872
650    _2
$a lidé $7 D006801
650    _2
$a virus chřipky A, podtyp H1N1 $7 D053118
650    _2
$a chřipka lidská $x epidemiologie $7 D007251
650    _2
$a matematické pojmy $7 D055641
650    _2
$a biologické modely $7 D008954
650    12
$a statistické modely $7 D015233
650    _2
$a pandemie $x statistika a číselné údaje $7 D058873
650    _2
$a roční období $7 D012621
651    _2
$a Česká republika $x epidemiologie $7 D018153
651    _2
$a Turecko $x epidemiologie $7 D014421
655    _2
$a časopisecké články $7 D016428
700    1_
$a Samanlioglu, Funda
700    1_
$a Ergonul, Onder
773    0_
$w MED00002783 $t Journal of mathematical biology $x 1432-1416 $g Roč. 71, č. 4 (2015), s. 767-794
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25312413 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200922 $b ABA008
991    __
$a 20200929121142 $b ABA008
999    __
$a ok $b bmc $g 1567618 $s 1104917
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 71 $c 4 $d 767-794 $e 20141014 $i 1432-1416 $m Journal of mathematical biology $n J Math Biol $x MED00002783
LZP    __
$a Pubmed-20200922

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...