• Je něco špatně v tomto záznamu ?

Semi-supervised Training Data Selection Improves Seizure Forecasting in Canines with Epilepsy

M. Nasseri, V. Kremen, P. Nejedly, I. Kim, SY. Chang, H. Joon Jo, H. Guragain, N. Nelson, E. Patterson, BK. Sturges, CM. Crowe, T. Denison, BH. Brinkmann, GA. Worrell,

. 2020 ; 57 (-) : . [pub] 20191114

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022128

Grantová podpora
R01 NS078136 NINDS NIH HHS - United States
R01 NS092882 NINDS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States

Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training data typically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defining a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs are uniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data characteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, and selection of pre-ictal training data segments to reflect this could improve algorithm performance. Methods: We propose a semi-supervised technique to select pre-ictal training data most distinguishable from interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchical clustering to identify optimal pre-ictal data epochs. Results: In this paper we compare the performance of a seizure forecasting algorithm with and without hierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturally occurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW) (0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p<0.001, n=6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs. Conclusion: Hierarchical clustering is a helpful method for training data selection overall, but should be evaluated on a subject-wise basis. Significance: The clustering method can be used to optimize results of forecasting towards sensitivity or TIW or FPR, and therefore can be useful for epilepsy management.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022128
003      
CZ-PrNML
005      
20201204093824.0
007      
ta
008      
201125s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bspc.2019.101743 $2 doi
035    __
$a (PubMed)32863855
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Nasseri, Mona $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
245    10
$a Semi-supervised Training Data Selection Improves Seizure Forecasting in Canines with Epilepsy / $c M. Nasseri, V. Kremen, P. Nejedly, I. Kim, SY. Chang, H. Joon Jo, H. Guragain, N. Nelson, E. Patterson, BK. Sturges, CM. Crowe, T. Denison, BH. Brinkmann, GA. Worrell,
520    9_
$a Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training data typically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defining a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs are uniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data characteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, and selection of pre-ictal training data segments to reflect this could improve algorithm performance. Methods: We propose a semi-supervised technique to select pre-ictal training data most distinguishable from interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchical clustering to identify optimal pre-ictal data epochs. Results: In this paper we compare the performance of a seizure forecasting algorithm with and without hierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturally occurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW) (0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p<0.001, n=6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs. Conclusion: Hierarchical clustering is a helpful method for training data selection overall, but should be evaluated on a subject-wise basis. Significance: The clustering method can be used to optimize results of forecasting towards sensitivity or TIW or FPR, and therefore can be useful for epilepsy management.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kremen, Vaclav $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA. Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic.
700    1_
$a Nejedly, Petr $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Kim, Inyong $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Chang, Su-Youne $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA. Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Joon Jo, Hang $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Guragain, Hari $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Nelson, Nathaniel $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Patterson, Edward $u Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, USA.
700    1_
$a Sturges, Beverly K $u Veterinary Medical Teaching Hospital, University of California at Davis, Davis, CA 95616, USA.
700    1_
$a Crowe, Chelsea M $u Veterinary Medical Teaching Hospital, University of California at Davis, Davis, CA 95616, USA.
700    1_
$a Denison, Tim $u Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK.
700    1_
$a Brinkmann, Benjamin H $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Worrell, Gregory A $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
773    0_
$w MED00166621 $t Biomedical signal processing and control $x 1746-8094 $g Roč. 57, č. - (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32863855 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201204093821 $b ABA008
999    __
$a ind $b bmc $g 1591835 $s 1112800
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 57 $c - $e 20191114 $i 1746-8094 $m Biomedical signal processing control $n Biomed Signal Process Control $x MED00166621
GRA    __
$a R01 NS078136 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS092882 $p NINDS NIH HHS $2 United States
GRA    __
$a UH2 NS095495 $p NINDS NIH HHS $2 United States
GRA    __
$a UH3 NS095495 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...