Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii

Q. Tao, R. Jupa, Y. Liu, J. Luo, J. Li, J. Kováč, B. Li, Q. Li, K. Wu, Y. Liang, A. Lux, C. Wang, T. Li,

. 2019 ; 42 (5) : 1425-1440. [pub] 20190119

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022766

Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up-regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel-to-CSs overlap was identified as an ABA-driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin-related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion-selected electrode technique and PTS tracer confirmed that ABA-promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022766
003      
CZ-PrNML
005      
20201214124755.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/pce.13506 $2 doi
035    __
$a (PubMed)30577078
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Tao, Qi $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China. College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
245    10
$a Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii / $c Q. Tao, R. Jupa, Y. Liu, J. Luo, J. Li, J. Kováč, B. Li, Q. Li, K. Wu, Y. Liang, A. Lux, C. Wang, T. Li,
520    9_
$a Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up-regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel-to-CSs overlap was identified as an ABA-driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin-related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion-selected electrode technique and PTS tracer confirmed that ABA-promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.
650    _2
$a kyselina abscisová $x metabolismus $7 D000040
650    _2
$a biologický transport $x genetika $x fyziologie $7 D001692
650    _2
$a kadmium $x metabolismus $7 D002104
650    _2
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a lipidy $x genetika $7 D008055
650    _2
$a regulátory růstu rostlin $x genetika $x metabolismus $7 D010937
650    _2
$a kořeny rostlin $x anatomie a histologie $x metabolismus $7 D018517
650    _2
$a Sedum $x genetika $x metabolismus $7 D031963
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jupa, Radek $u Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic.
700    1_
$a Liu, Yuankun $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
700    1_
$a Luo, Jipeng $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
700    1_
$a Li, Jinxing $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
700    1_
$a Kováč, Ján $u Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia.
700    1_
$a Li, Bing $u College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
700    1_
$a Li, Qiquan $u College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
700    1_
$a Wu, Keren $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
700    1_
$a Liang, Yongchao $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
700    1_
$a Lux, Alexander $u Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia.
700    1_
$a Wang, Changquan $u College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
700    1_
$a Li, Tingqiang $u Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
773    0_
$w MED00006561 $t Plant, cell & environment $x 1365-3040 $g Roč. 42, č. 5 (2019), s. 1425-1440
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30577078 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124755 $b ABA008
999    __
$a ok $b bmc $g 1595085 $s 1113442
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 42 $c 5 $d 1425-1440 $e 20190119 $i 1365-3040 $m Plant, cell and environment $n Plant Cell Environ $x MED00006561
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...