-
Je něco špatně v tomto záznamu ?
Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions
D. Stowell, T. Petrusková, M. Šálek, P. Linhart,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2004
PubMed Central
od 2004 do Před 1 rokem
Europe PubMed Central
od 2004 do Před 1 rokem
Open Access Digital Library
od 2004-01-01
Open Access Digital Library
od 2004-11-22
PubMed
30966953
DOI
10.1098/rsif.2018.0940
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- druhová specificita MeSH
- individualita * MeSH
- ptáci klasifikace MeSH
- vokalizace zvířat klasifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems. We further introduce new analysis techniques based on dataset manipulations that can evaluate the robustness and generality of a classifier. By using these techniques, we confirmed the presence of experimental confounds in situations resembling those from past studies. We introduce data manipulations that can reduce the impact of these confounds, compatible with any classifier. We suggest that assessment of confounds should become a standard part of future studies to ensure they do not report over-optimistic results. We provide annotated recordings used for analyses along with this study and we call for dataset sharing to be a common practice to enhance the development of methods and comparisons of results.
Department of Behavioural Ecology Faculty of Biology Adam Mickiewicz University Poznań Poland
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Machine Listening Lab Centre for Digital Music Queen Mary University of London London UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022776
- 003
- CZ-PrNML
- 005
- 20201214124800.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1098/rsif.2018.0940 $2 doi
- 035 __
- $a (PubMed)30966953
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Stowell, Dan $u 1 Machine Listening Lab, Centre for Digital Music, Queen Mary University of London , London , UK.
- 245 10
- $a Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions / $c D. Stowell, T. Petrusková, M. Šálek, P. Linhart,
- 520 9_
- $a Many animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems. We further introduce new analysis techniques based on dataset manipulations that can evaluate the robustness and generality of a classifier. By using these techniques, we confirmed the presence of experimental confounds in situations resembling those from past studies. We introduce data manipulations that can reduce the impact of these confounds, compatible with any classifier. We suggest that assessment of confounds should become a standard part of future studies to ensure they do not report over-optimistic results. We provide annotated recordings used for analyses along with this study and we call for dataset sharing to be a common practice to enhance the development of methods and comparisons of results.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a ptáci $x klasifikace $7 D001717
- 650 12
- $a individualita $7 D007206
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a druhová specificita $7 D013045
- 650 _2
- $a vokalizace zvířat $x klasifikace $7 D014828
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Petrusková, Tereza $u 2 Department of Ecology, Faculty of Science, Charles University , Prague , Czech Republic.
- 700 1_
- $a Šálek, Martin $u 3 Institute of Vertebrate Biology, The Czech Academy of Sciences , Brno , Czech Republic. 4 Faculty of Environmental Sciences, Czech University of Life Sciences Prague , Prague , Czech Republic.
- 700 1_
- $a Linhart, Pavel $u 5 Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University , Poznań , Poland.
- 773 0_
- $w MED00180378 $t Journal of the Royal Society, Interface $x 1742-5662 $g Roč. 16, č. 153 (2019), s. 20180940
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30966953 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214124800 $b ABA008
- 999 __
- $a ok $b bmc $g 1595095 $s 1113452
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 16 $c 153 $d 20180940 $e 20190426 $i 1742-5662 $m Journal of the Royal Society, Interface $n J R Soc Interface $x MED00180378
- LZP __
- $a Pubmed-20201125