• Je něco špatně v tomto záznamu ?

Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions

D. Stowell, T. Petrusková, M. Šálek, P. Linhart,

. 2019 ; 16 (153) : 20180940. [pub] 20190426

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022776

Many animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems. We further introduce new analysis techniques based on dataset manipulations that can evaluate the robustness and generality of a classifier. By using these techniques, we confirmed the presence of experimental confounds in situations resembling those from past studies. We introduce data manipulations that can reduce the impact of these confounds, compatible with any classifier. We suggest that assessment of confounds should become a standard part of future studies to ensure they do not report over-optimistic results. We provide annotated recordings used for analyses along with this study and we call for dataset sharing to be a common practice to enhance the development of methods and comparisons of results.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022776
003      
CZ-PrNML
005      
20201214124800.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1098/rsif.2018.0940 $2 doi
035    __
$a (PubMed)30966953
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Stowell, Dan $u 1 Machine Listening Lab, Centre for Digital Music, Queen Mary University of London , London , UK.
245    10
$a Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions / $c D. Stowell, T. Petrusková, M. Šálek, P. Linhart,
520    9_
$a Many animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems. We further introduce new analysis techniques based on dataset manipulations that can evaluate the robustness and generality of a classifier. By using these techniques, we confirmed the presence of experimental confounds in situations resembling those from past studies. We introduce data manipulations that can reduce the impact of these confounds, compatible with any classifier. We suggest that assessment of confounds should become a standard part of future studies to ensure they do not report over-optimistic results. We provide annotated recordings used for analyses along with this study and we call for dataset sharing to be a common practice to enhance the development of methods and comparisons of results.
650    _2
$a zvířata $7 D000818
650    _2
$a ptáci $x klasifikace $7 D001717
650    12
$a individualita $7 D007206
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a biologické modely $7 D008954
650    _2
$a druhová specificita $7 D013045
650    _2
$a vokalizace zvířat $x klasifikace $7 D014828
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Petrusková, Tereza $u 2 Department of Ecology, Faculty of Science, Charles University , Prague , Czech Republic.
700    1_
$a Šálek, Martin $u 3 Institute of Vertebrate Biology, The Czech Academy of Sciences , Brno , Czech Republic. 4 Faculty of Environmental Sciences, Czech University of Life Sciences Prague , Prague , Czech Republic.
700    1_
$a Linhart, Pavel $u 5 Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University , Poznań , Poland.
773    0_
$w MED00180378 $t Journal of the Royal Society, Interface $x 1742-5662 $g Roč. 16, č. 153 (2019), s. 20180940
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30966953 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124800 $b ABA008
999    __
$a ok $b bmc $g 1595095 $s 1113452
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 16 $c 153 $d 20180940 $e 20190426 $i 1742-5662 $m Journal of the Royal Society, Interface $n J R Soc Interface $x MED00180378
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...