• Something wrong with this record ?

Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide

A. Muzzi, A. Brozzi, L. Serino, M. Bodini, R. Abad, D. Caugant, M. Comanducci, AP. Lemos, MC. Gorla, P. Křížová, C. Mikula, R. Mulhall, M. Nissen, H. Nohynek, MJ. Simões, A. Skoczyńska, P. Stefanelli, MK. Taha, M. Toropainen, G. Tzanakaki, K....

. 2019 ; 37 (7) : 991-1000. [pub] 20190117

Language English Country Netherlands

Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 2002-01-01 to 2 months ago
Nursing & Allied Health Database (ProQuest) from 2002-01-01 to 2 months ago
Health & Medicine (ProQuest) from 2002-01-01 to 2 months ago
Family Health Database (ProQuest) from 2002-01-01 to 2 months ago
Health Management Database (ProQuest) from 2002-01-01 to 2 months ago
Public Health Database (ProQuest) from 2002-01-01 to 2 months ago

BACKGROUND: The Meningococcal Antigen Typing System (MATS) was developed to identify meningococcus group B strains with a high likelihood of being covered by the 4CMenB vaccine, but is limited by the requirement for viable isolates from culture-confirmed cases. We examined if antigen genotyping could complement MATS in predicting strain coverage by the 4CMenB vaccine. METHODS: From a panel of 3912 MATS-typed invasive meningococcal disease isolates collected in England and Wales in 2007-2008, 2014-2015 and 2015-2016, and in 16 other countries in 2000-2015, 3481 isolates were also characterized by antigen genotyping. Individual associations between antigen genotypes and MATS coverage for each 4CMenB component were used to define a genetic MATS (gMATS). gMATS estimates were compared with England and Wales human complement serum bactericidal assay (hSBA) data and vaccine effectiveness (VE) data from England. RESULTS: Overall, 81% of the strain panel had genetically predictable MATS coverage, with 92% accuracy and highly concordant results across national panels (Lin's accuracy coefficient, 0.98; root-mean-square deviation, 6%). England and Wales strain coverage estimates were 72-73% by genotyping (66-73% by MATS), underestimating hSBA values after four vaccine doses (88%) and VE after two doses (83%). The gMATS predicted strain coverage in other countries was 58-88%. CONCLUSIONS: gMATS can replace MATS in predicting 4CMenB strain coverage in four out of five cases, without requiring a cultivable isolate, and is open to further improvement. Both methods underestimated VE in England. Strain coverage predictions in other countries matched or exceeded England and Wales estimates.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022891
003      
CZ-PrNML
005      
20201214124934.0
007      
ta
008      
201125s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.vaccine.2018.12.061 $2 doi
035    __
$a (PubMed)30661831
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Muzzi, Alessandro $u GSK, Siena, Italy. Electronic address: alessandro.x.muzzi@gsk.com.
245    10
$a Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide / $c A. Muzzi, A. Brozzi, L. Serino, M. Bodini, R. Abad, D. Caugant, M. Comanducci, AP. Lemos, MC. Gorla, P. Křížová, C. Mikula, R. Mulhall, M. Nissen, H. Nohynek, MJ. Simões, A. Skoczyńska, P. Stefanelli, MK. Taha, M. Toropainen, G. Tzanakaki, K. Vadivelu-Pechai, P. Watson, JA. Vazquez, G. Rajam, R. Rappuoli, R. Borrow, D. Medini,
520    9_
$a BACKGROUND: The Meningococcal Antigen Typing System (MATS) was developed to identify meningococcus group B strains with a high likelihood of being covered by the 4CMenB vaccine, but is limited by the requirement for viable isolates from culture-confirmed cases. We examined if antigen genotyping could complement MATS in predicting strain coverage by the 4CMenB vaccine. METHODS: From a panel of 3912 MATS-typed invasive meningococcal disease isolates collected in England and Wales in 2007-2008, 2014-2015 and 2015-2016, and in 16 other countries in 2000-2015, 3481 isolates were also characterized by antigen genotyping. Individual associations between antigen genotypes and MATS coverage for each 4CMenB component were used to define a genetic MATS (gMATS). gMATS estimates were compared with England and Wales human complement serum bactericidal assay (hSBA) data and vaccine effectiveness (VE) data from England. RESULTS: Overall, 81% of the strain panel had genetically predictable MATS coverage, with 92% accuracy and highly concordant results across national panels (Lin's accuracy coefficient, 0.98; root-mean-square deviation, 6%). England and Wales strain coverage estimates were 72-73% by genotyping (66-73% by MATS), underestimating hSBA values after four vaccine doses (88%) and VE after two doses (83%). The gMATS predicted strain coverage in other countries was 58-88%. CONCLUSIONS: gMATS can replace MATS in predicting 4CMenB strain coverage in four out of five cases, without requiring a cultivable isolate, and is open to further improvement. Both methods underestimated VE in England. Strain coverage predictions in other countries matched or exceeded England and Wales estimates.
650    _2
$a antigeny bakteriální $x genetika $7 D000942
650    12
$a genotyp $7 D005838
650    _2
$a genotypizační techniky $x metody $7 D060005
650    _2
$a celosvětové zdraví $7 D014943
650    _2
$a lidé $7 D006801
650    _2
$a meningokoková meningitida $x epidemiologie $x mikrobiologie $7 D008585
650    _2
$a meningokokové vakcíny $x imunologie $7 D022401
650    _2
$a molekulární epidemiologie $x metody $7 D017720
650    _2
$a Neisseria meningitidis séroskupiny B $x klasifikace $x genetika $x izolace a purifikace $7 D038541
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Brozzi, Alessandro $u GSK, Siena, Italy. Electronic address: alessandro.x.brozzi@gsk.com.
700    1_
$a Serino, Laura $u GSK, Siena, Italy. Electronic address: laura.x.serino@gsk.com.
700    1_
$a Bodini, Margherita $u GSK, Siena, Italy. Electronic address: margherita.x.bodini@gsk.com.
700    1_
$a Abad, Raquel $u National Centre for Microbiology, Institute of Health Carlos III, Madrid, Spain. Electronic address: rabad@isciii.es.
700    1_
$a Caugant, Dominique $u Norwegian Institute of Public Health, Oslo, Norway. Electronic address: Dominique.Caugant@fhi.no.
700    1_
$a Comanducci, Maurizio $u GSK, Siena, Italy.
700    1_
$a Lemos, Ana Paula $u Instituto Adolfo Lutz, São Paulo, Brazil. Electronic address: ana.lemos@ial.sp.gov.br.
700    1_
$a Gorla, Maria Cecilia $u Instituto Adolfo Lutz, São Paulo, Brazil. Electronic address: maria.gorla@ial.sp.gov.br.
700    1_
$a Křížová, Pavla $u National Institute of Public Health, Prague, Czech Republic. Electronic address: pavla.krizova@szu.cz.
700    1_
$a Mikula, Claudia $u Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Graz, Austria. Electronic address: claudia.mikula@ages.at.
700    1_
$a Mulhall, Robert $u Irish Meningitis and Sepsis Reference Laboratory (IMSRL), Dublin, Ireland. Electronic address: Robert.Mulhall@cuh.ie.
700    1_
$a Nissen, Michael $u Queensland Paediatric Infectious Diseases Laboratory, Children's Health Research Centre, University of Queensland, Lady Cilento Children's Hospital South Brisbane, Queensland, Australia. Electronic address: michael.d.nissen@gsk.com.
700    1_
$a Nohynek, Hanna $u National Institute for Health and Welfare (THL), Helsinki, Finland. Electronic address: hanna.nohynek@thl.fi.
700    1_
$a Simões, Maria João $u National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal. Electronic address: M.Joao.Simoes@insa.min-saude.pt.
700    1_
$a Skoczyńska, Anna $u National Medicines Institute, Warsaw, Poland. Electronic address: skoczek@cls.edu.pl.
700    1_
$a Stefanelli, Paola $u Department of Infectious Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy. Electronic address: paola.stefanelli@iss.it.
700    1_
$a Taha, Muhamed-Kheir $u Institut Pasteur, Paris, France. Electronic address: muhamed-kheir.taha@pasteur.fr.
700    1_
$a Toropainen, Maija $u National Institute for Health and Welfare (THL), Helsinki, Finland. Electronic address: maija.toropainen@thl.fi.
700    1_
$a Tzanakaki, Georgina $u National Meningitis Reference Laboratory, National School of Public Health, Athens, Greece. Electronic address: gtzanakaki@esdy.edu.gr.
700    1_
$a Vadivelu-Pechai, Kumaran $u GSK, Rockville, USA. Electronic address: kumaran.k.vadivelu-pechai@gsk.com.
700    1_
$a Watson, Philip $u GSK, Rockville, USA. Electronic address: philip.s.watson@gsk.com.
700    1_
$a Vazquez, Julio A $u National Centre for Microbiology, Institute of Health Carlos III, Madrid, Spain. Electronic address: jvazquez@isciii.es.
700    1_
$a Rajam, Gowrisankar $u Centers for Disease Control and Prevention, Atlanta, GA, USA.
700    1_
$a Rappuoli, Rino $u GSK, Siena, Italy. Electronic address: rino.r.rappuoli@gsk.com.
700    1_
$a Borrow, Ray $u Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK. Electronic address: Ray.Borrow@phe.gov.uk.
700    1_
$a Medini, Duccio $u GSK, Siena, Italy. Electronic address: duccio.x.medini@gsk.com.
773    0_
$w MED00004631 $t Vaccine $x 1873-2518 $g Roč. 37, č. 7 (2019), s. 991-1000
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30661831 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124934 $b ABA008
999    __
$a ok $b bmc $g 1595210 $s 1113567
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 37 $c 7 $d 991-1000 $e 20190117 $i 1873-2518 $m Vaccine $n Vaccine $x MED00004631
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...