-
Something wrong with this record ?
Dinucleoside polyphosphates act as 5'-RNA caps in bacteria
O. Hudeček, R. Benoni, PE. Reyes-Gutierrez, M. Culka, H. Šanderová, M. Hubálek, L. Rulíšek, J. Cvačka, L. Krásný, H. Cahová,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- RNA, Bacterial genetics MeSH
- Dinucleoside Phosphates genetics MeSH
- DNA-Directed RNA Polymerases genetics MeSH
- Escherichia coli genetics MeSH
- Acid Anhydride Hydrolases metabolism MeSH
- Nucleic Acid Conformation MeSH
- Methylation MeSH
- Escherichia coli Proteins metabolism MeSH
- RNA Caps genetics MeSH
- RNA Stability MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
It has been more than 50 years since the discovery of dinucleoside polyphosphates (NpnNs) and yet their roles and mechanisms of action remain unclear. Here, we show that both methylated and non-methylated NpnNs serve as RNA caps in Escherichia coli. NpnNs are excellent substrates for T7 and E. coli RNA polymerases (RNAPs) and efficiently initiate transcription. We demonstrate, that the E. coli enzymes RNA 5'-pyrophosphohydrolase (RppH) and bis(5'-nucleosyl)-tetraphosphatase (ApaH) are able to remove the NpnN-caps from RNA. ApaH is able to cleave all NpnN-caps, while RppH is unable to cleave the methylated forms suggesting that the methylation adds an additional layer to RNA stability regulation. Our work introduces a different perspective on the chemical structure of RNA in prokaryotes and on the role of RNA caps. We bring evidence that small molecules, such as NpnNs are incorporated into RNA and may thus influence the cellular metabolism and RNA turnover.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023155
- 003
- CZ-PrNML
- 005
- 20220224130554.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-020-14896-8 $2 doi
- 035 __
- $a (PubMed)32103016
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Hudeček, Oldřich $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
- 245 10
- $a Dinucleoside polyphosphates act as 5'-RNA caps in bacteria / $c O. Hudeček, R. Benoni, PE. Reyes-Gutierrez, M. Culka, H. Šanderová, M. Hubálek, L. Rulíšek, J. Cvačka, L. Krásný, H. Cahová,
- 520 9_
- $a It has been more than 50 years since the discovery of dinucleoside polyphosphates (NpnNs) and yet their roles and mechanisms of action remain unclear. Here, we show that both methylated and non-methylated NpnNs serve as RNA caps in Escherichia coli. NpnNs are excellent substrates for T7 and E. coli RNA polymerases (RNAPs) and efficiently initiate transcription. We demonstrate, that the E. coli enzymes RNA 5'-pyrophosphohydrolase (RppH) and bis(5'-nucleosyl)-tetraphosphatase (ApaH) are able to remove the NpnN-caps from RNA. ApaH is able to cleave all NpnN-caps, while RppH is unable to cleave the methylated forms suggesting that the methylation adds an additional layer to RNA stability regulation. Our work introduces a different perspective on the chemical structure of RNA in prokaryotes and on the role of RNA caps. We bring evidence that small molecules, such as NpnNs are incorporated into RNA and may thus influence the cellular metabolism and RNA turnover.
- 650 _2
- $a hydrolasy působící na anhydridy kyselin $x metabolismus $7 D017766
- 650 _2
- $a DNA řízené RNA-polymerasy $x genetika $7 D012321
- 650 _2
- $a dinukleosidfosfáty $x genetika $7 D015226
- 650 _2
- $a Escherichia coli $x genetika $7 D004926
- 650 _2
- $a proteiny z Escherichia coli $x metabolismus $7 D029968
- 650 _2
- $a metylace $7 D008745
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a RNA čepičky $x genetika $7 D012315
- 650 _2
- $a stabilita RNA $7 D020871
- 650 _2
- $a bakteriální RNA $x genetika $7 D012329
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Benoni, Roberto $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
- 700 1_
- $a Reyes-Gutiérrez, Paul Eduardo $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic. $7 xx0269917
- 700 1_
- $a Culka, Martin $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
- 700 1_
- $a Šanderová, Hana $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
- 700 1_
- $a Hubálek, Martin $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
- 700 1_
- $a Rulíšek, Lubomír $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
- 700 1_
- $a Cvačka, Josef $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
- 700 1_
- $a Krásný, Libor $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
- 700 1_
- $a Cahová, Hana $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic. cahova@uochb.cas.cz.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 11, č. 1 (2020), s. 1052
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32103016 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20220224130548 $b ABA008
- 999 __
- $a ok $b bmc $g 1595474 $s 1113831
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 11 $c 1 $d 1052 $e 20200226 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20201125