Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Impact of posttranslational modifications on atomistic structure of fibrinogen

Ž. Sovová, J. Štikarová, J. Kaufmanová, P. Májek, J. Suttnar, P. Šácha, M. Malý, JE. Dyr,

. 2020 ; 15 (1) : e0227543. [pub] 20200129

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023216

Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer's disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72-γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023216
003      
CZ-PrNML
005      
20201214125516.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0227543 $2 doi
035    __
$a (PubMed)31995579
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sovová, Žofie $u Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
245    10
$a Impact of posttranslational modifications on atomistic structure of fibrinogen / $c Ž. Sovová, J. Štikarová, J. Kaufmanová, P. Májek, J. Suttnar, P. Šácha, M. Malý, JE. Dyr,
520    9_
$a Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer's disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72-γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.
650    _2
$a fibrinogen $x chemie $x metabolismus $7 D005340
650    _2
$a lidé $7 D006801
650    _2
$a simulace molekulární dynamiky $7 D056004
650    12
$a posttranslační úpravy proteinů $7 D011499
650    _2
$a sekundární struktura proteinů $7 D017433
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Štikarová, Jana $u Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
700    1_
$a Kaufmanová, Jiřina $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
700    1_
$a Májek, Pavel $u Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
700    1_
$a Suttnar, Jiří $u Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
700    1_
$a Šácha, Pavel $u Proteases of Human Pathogens, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i., Prague, Czech Republic.
700    1_
$a Malý, Martin $u Military University Hospital, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Dyr, Jan E $u Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 15, č. 1 (2020), s. e0227543
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31995579 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125515 $b ABA008
999    __
$a ok $b bmc $g 1595535 $s 1113892
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 15 $c 1 $d e0227543 $e 20200129 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...