Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii

K. Inomura, C. Deutsch, ST. Wilson, T. Masuda, E. Lawrenz, B. Lenka, R. Sobotka, JM. Gauglitz, MA. Saito, O. Prášil, MJ. Follows,

. 2019 ; 4 (6) : . [pub] 20191211

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023342

Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2 Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2 The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m-2 s-1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m-2 s-1 This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.IMPORTANCECrocosphaera is one of the major N2-fixing microorganisms in the open ocean. On a global scale, the process of N2 fixation is important in balancing the N budget, but the factors governing the rate of N2 fixation remain poorly resolved. Here, we combine a mechanistic model and both previous and present laboratory studies of Crocosphaera to quantify how chemical factors such as C, N, Fe, and O2 and physical factors such as temperature and light affect N2 fixation. Our study shows that Crocosphaera combines multiple mechanisms to reduce intracellular O2 to protect the O2-sensitive N2-fixing enzyme. Our model, however, indicates that these protections are insufficient at low temperature due to reduced respiration and the rate of N2 fixation becomes severely limited. This provides a physiological explanation for why the geographic distribution of Crocosphaera is confined to the warm low-latitude ocean.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023342
003      
CZ-PrNML
005      
20201214125811.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1128/mSphere.00531-19 $2 doi
035    __
$a (PubMed)31826967
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Inomura, Keisuke $u School of Oceanography, University of Washington, Seattle, Washington, USA ki24@uw.edu.
245    10
$a Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii / $c K. Inomura, C. Deutsch, ST. Wilson, T. Masuda, E. Lawrenz, B. Lenka, R. Sobotka, JM. Gauglitz, MA. Saito, O. Prášil, MJ. Follows,
520    9_
$a Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2 Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2 The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m-2 s-1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m-2 s-1 This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.IMPORTANCECrocosphaera is one of the major N2-fixing microorganisms in the open ocean. On a global scale, the process of N2 fixation is important in balancing the N budget, but the factors governing the rate of N2 fixation remain poorly resolved. Here, we combine a mechanistic model and both previous and present laboratory studies of Crocosphaera to quantify how chemical factors such as C, N, Fe, and O2 and physical factors such as temperature and light affect N2 fixation. Our study shows that Crocosphaera combines multiple mechanisms to reduce intracellular O2 to protect the O2-sensitive N2-fixing enzyme. Our model, however, indicates that these protections are insufficient at low temperature due to reduced respiration and the rate of N2 fixation becomes severely limited. This provides a physiological explanation for why the geographic distribution of Crocosphaera is confined to the warm low-latitude ocean.
650    _2
$a sinice $x cytologie $x metabolismus $x účinky záření $7 D000458
650    12
$a světlo $7 D008027
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    12
$a fixace dusíku $7 D009586
650    _2
$a kyslík $x metabolismus $7 D010100
650    _2
$a škrob $x metabolismus $7 D013213
650    12
$a teplota $7 D013696
650    _2
$a tylakoidy $x metabolismus $7 D020524
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Deutsch, Curtis $u School of Oceanography, University of Washington, Seattle, Washington, USA.
700    1_
$a Wilson, Samuel T $u Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, Hawaii, USA.
700    1_
$a Masuda, Takako $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
700    1_
$a Lawrenz, Evelyn $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
700    1_
$a Lenka, Bučinská $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
700    1_
$a Sobotka, Roman $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
700    1_
$a Gauglitz, Julia M $u Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, USA. Marine Chemistry and Geochemistry Department and Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
700    1_
$a Saito, Mak A $u Marine Chemistry and Geochemistry Department and Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
700    1_
$a Prášil, Ondřej $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
700    1_
$a Follows, Michael J $u Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
773    0_
$w MED00190572 $t mSphere $x 2379-5042 $g Roč. 4, č. 6 (2019)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31826967 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125811 $b ABA008
999    __
$a ok $b bmc $g 1595661 $s 1114018
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 4 $c 6 $e 20191211 $i 2379-5042 $m mSphere $n mSphere $x MED00190572
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...