-
Je něco špatně v tomto záznamu ?
Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii
K. Inomura, C. Deutsch, ST. Wilson, T. Masuda, E. Lawrenz, B. Lenka, R. Sobotka, JM. Gauglitz, MA. Saito, O. Prášil, MJ. Follows,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Directory of Open Access Journals
od 2016
Free Medical Journals
od 2016
Freely Accessible Science Journals
od 2016
PubMed Central
od 2016
Europe PubMed Central
od 2016
ProQuest Central
od 2015-01-01
Open Access Digital Library
od 2016-01-01
Health & Medicine (ProQuest)
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2016
PubMed
31826967
DOI
10.1128/msphere.00531-19
Knihovny.cz E-zdroje
- MeSH
- fixace dusíku * MeSH
- kyslík metabolismus MeSH
- sinice cytologie metabolismus účinky záření MeSH
- škrob metabolismus MeSH
- světlo * MeSH
- teplota * MeSH
- transmisní elektronová mikroskopie MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2 Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2 The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m-2 s-1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m-2 s-1 This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.IMPORTANCECrocosphaera is one of the major N2-fixing microorganisms in the open ocean. On a global scale, the process of N2 fixation is important in balancing the N budget, but the factors governing the rate of N2 fixation remain poorly resolved. Here, we combine a mechanistic model and both previous and present laboratory studies of Crocosphaera to quantify how chemical factors such as C, N, Fe, and O2 and physical factors such as temperature and light affect N2 fixation. Our study shows that Crocosphaera combines multiple mechanisms to reduce intracellular O2 to protect the O2-sensitive N2-fixing enzyme. Our model, however, indicates that these protections are insufficient at low temperature due to reduced respiration and the rate of N2 fixation becomes severely limited. This provides a physiological explanation for why the geographic distribution of Crocosphaera is confined to the warm low-latitude ocean.
Institute of Microbiology The Czech Academy of Sciences Třeboň Czech Republic
School of Oceanography University of Washington Seattle Washington USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023342
- 003
- CZ-PrNML
- 005
- 20201214125811.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1128/mSphere.00531-19 $2 doi
- 035 __
- $a (PubMed)31826967
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Inomura, Keisuke $u School of Oceanography, University of Washington, Seattle, Washington, USA ki24@uw.edu.
- 245 10
- $a Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii / $c K. Inomura, C. Deutsch, ST. Wilson, T. Masuda, E. Lawrenz, B. Lenka, R. Sobotka, JM. Gauglitz, MA. Saito, O. Prášil, MJ. Follows,
- 520 9_
- $a Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2 Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2 The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m-2 s-1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m-2 s-1 This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.IMPORTANCECrocosphaera is one of the major N2-fixing microorganisms in the open ocean. On a global scale, the process of N2 fixation is important in balancing the N budget, but the factors governing the rate of N2 fixation remain poorly resolved. Here, we combine a mechanistic model and both previous and present laboratory studies of Crocosphaera to quantify how chemical factors such as C, N, Fe, and O2 and physical factors such as temperature and light affect N2 fixation. Our study shows that Crocosphaera combines multiple mechanisms to reduce intracellular O2 to protect the O2-sensitive N2-fixing enzyme. Our model, however, indicates that these protections are insufficient at low temperature due to reduced respiration and the rate of N2 fixation becomes severely limited. This provides a physiological explanation for why the geographic distribution of Crocosphaera is confined to the warm low-latitude ocean.
- 650 _2
- $a sinice $x cytologie $x metabolismus $x účinky záření $7 D000458
- 650 12
- $a světlo $7 D008027
- 650 _2
- $a transmisní elektronová mikroskopie $7 D046529
- 650 12
- $a fixace dusíku $7 D009586
- 650 _2
- $a kyslík $x metabolismus $7 D010100
- 650 _2
- $a škrob $x metabolismus $7 D013213
- 650 12
- $a teplota $7 D013696
- 650 _2
- $a tylakoidy $x metabolismus $7 D020524
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Deutsch, Curtis $u School of Oceanography, University of Washington, Seattle, Washington, USA.
- 700 1_
- $a Wilson, Samuel T $u Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, Hawaii, USA.
- 700 1_
- $a Masuda, Takako $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
- 700 1_
- $a Lawrenz, Evelyn $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
- 700 1_
- $a Lenka, Bučinská $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
- 700 1_
- $a Sobotka, Roman $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
- 700 1_
- $a Gauglitz, Julia M $u Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, USA. Marine Chemistry and Geochemistry Department and Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
- 700 1_
- $a Saito, Mak A $u Marine Chemistry and Geochemistry Department and Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
- 700 1_
- $a Prášil, Ondřej $u Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.
- 700 1_
- $a Follows, Michael J $u Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
- 773 0_
- $w MED00190572 $t mSphere $x 2379-5042 $g Roč. 4, č. 6 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31826967 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125811 $b ABA008
- 999 __
- $a ok $b bmc $g 1595661 $s 1114018
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 4 $c 6 $e 20191211 $i 2379-5042 $m mSphere $n mSphere $x MED00190572
- LZP __
- $a Pubmed-20201125