-
Je něco špatně v tomto záznamu ?
One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity
M. Zessin, Z. Kutil, M. Meleshin, Z. Nováková, E. Ghazy, D. Kalbas, M. Marek, C. Romier, W. Sippl, C. Bařinka, M. Schutkowski,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biokatalýza MeSH
- histondeacetylasy chemie genetika metabolismus MeSH
- inhibitory histondeacetylas chemie metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- lysin chemie metabolismus MeSH
- thioamidy chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023359
- 003
- CZ-PrNML
- 005
- 20201214125836.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.biochem.9b00786 $2 doi
- 035 __
- $a (PubMed)31682411
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zessin, Matthes $u Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
- 245 10
- $a One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity / $c M. Zessin, Z. Kutil, M. Meleshin, Z. Nováková, E. Ghazy, D. Kalbas, M. Marek, C. Romier, W. Sippl, C. Bařinka, M. Schutkowski,
- 520 9_
- $a We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
- 650 _2
- $a biokatalýza $7 D055162
- 650 _2
- $a inhibitory histondeacetylas $x chemie $x metabolismus $7 D056572
- 650 _2
- $a histondeacetylasy $x chemie $x genetika $x metabolismus $7 D006655
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a lysin $x chemie $x metabolismus $7 D008239
- 650 _2
- $a thioamidy $x chemie $x metabolismus $7 D013854
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kutil, Zsófia $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic.
- 700 1_
- $a Meleshin, Marat $u Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
- 700 1_
- $a Nováková, Zora $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic.
- 700 1_
- $a Ghazy, Ehab $u Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
- 700 1_
- $a Kalbas, Diana $u Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
- 700 1_
- $a Marek, Martin $u Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France.
- 700 1_
- $a Romier, Christophe $u Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France.
- 700 1_
- $a Sippl, Wolfgang $u Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
- 700 1_
- $a Bařinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic.
- 700 1_
- $a Schutkowski, Mike $u Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
- 773 0_
- $w MED00009310 $t Biochemistry $x 1520-4995 $g Roč. 58, č. 48 (2019), s. 4777-4789
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31682411 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125835 $b ABA008
- 999 __
- $a ok $b bmc $g 1595678 $s 1114035
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 58 $c 48 $d 4777-4789 $e 20191114 $i 1520-4995 $m Biochemistry (Easton) $n Biochemistry $x MED00009310
- LZP __
- $a Pubmed-20201125