• Je něco špatně v tomto záznamu ?

One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity

M. Zessin, Z. Kutil, M. Meleshin, Z. Nováková, E. Ghazy, D. Kalbas, M. Marek, C. Romier, W. Sippl, C. Bařinka, M. Schutkowski,

. 2019 ; 58 (48) : 4777-4789. [pub] 20191114

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023359

We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023359
003      
CZ-PrNML
005      
20201214125836.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.biochem.9b00786 $2 doi
035    __
$a (PubMed)31682411
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zessin, Matthes $u Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
245    10
$a One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity / $c M. Zessin, Z. Kutil, M. Meleshin, Z. Nováková, E. Ghazy, D. Kalbas, M. Marek, C. Romier, W. Sippl, C. Bařinka, M. Schutkowski,
520    9_
$a We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
650    _2
$a biokatalýza $7 D055162
650    _2
$a inhibitory histondeacetylas $x chemie $x metabolismus $7 D056572
650    _2
$a histondeacetylasy $x chemie $x genetika $x metabolismus $7 D006655
650    _2
$a lidé $7 D006801
650    _2
$a kinetika $7 D007700
650    _2
$a lysin $x chemie $x metabolismus $7 D008239
650    _2
$a thioamidy $x chemie $x metabolismus $7 D013854
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kutil, Zsófia $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic.
700    1_
$a Meleshin, Marat $u Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
700    1_
$a Nováková, Zora $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic.
700    1_
$a Ghazy, Ehab $u Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
700    1_
$a Kalbas, Diana $u Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
700    1_
$a Marek, Martin $u Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France.
700    1_
$a Romier, Christophe $u Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France.
700    1_
$a Sippl, Wolfgang $u Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
700    1_
$a Bařinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic.
700    1_
$a Schutkowski, Mike $u Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany.
773    0_
$w MED00009310 $t Biochemistry $x 1520-4995 $g Roč. 58, č. 48 (2019), s. 4777-4789
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31682411 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125835 $b ABA008
999    __
$a ok $b bmc $g 1595678 $s 1114035
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 58 $c 48 $d 4777-4789 $e 20191114 $i 1520-4995 $m Biochemistry (Easton) $n Biochemistry $x MED00009310
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace