Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Transcriptional analysis of insect extreme freeze tolerance

LE. Des Marteaux, P. Hůla, V. Koštál,

. 2019 ; 286 (1913) : 20192019. [pub] 20191023

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023585

Few invertebrates can survive cryopreservation in liquid nitrogen, and the mechanisms by which some species do survive are underexplored, despite high application potential. Here, we turn to the drosophilid Chymomyza costata to strengthen our fundamental understanding of extreme freeze tolerance and gain insights about potential avenues for cryopreservation of biological materials. We first use RNAseq to generate transcriptomes of three C. costata larval phenotypic variants: those warm-acclimated in early or late diapause (weak capacity to survive cryopreservation), and those undergoing cold acclimation after diapause entry (extremely freeze tolerant, surviving cryopreservation). We identify mRNA transcripts representing genes and processes that accompany the physiological transition to extreme freeze tolerance and relate cryopreservation survival to the transcriptional profiles of select candidate genes using extended sampling of phenotypic variants. Enhanced capacity for protein folding, refolding and processing appears to be a central theme of extreme freeze tolerance and may allow cold-acclimated larvae to repair or eliminate proteins damaged by freezing (thus mitigating the toxicity of denatured proteins, endoplasmic reticulum stress and subsequent apoptosis). We also find a number of candidate genes (including both known and potentially novel, unannotated sequences) whose expression profiles tightly mirror the change in extreme freeze tolerance status among phenotypic variants.

000      
00000naa a2200000 a 4500
001      
bmc20023585
003      
CZ-PrNML
005      
20201214130504.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1098/rspb.2019.2019 $2 doi
035    __
$a (PubMed)31640516
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Des Marteaux, Lauren E $u Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
245    10
$a Transcriptional analysis of insect extreme freeze tolerance / $c LE. Des Marteaux, P. Hůla, V. Koštál,
520    9_
$a Few invertebrates can survive cryopreservation in liquid nitrogen, and the mechanisms by which some species do survive are underexplored, despite high application potential. Here, we turn to the drosophilid Chymomyza costata to strengthen our fundamental understanding of extreme freeze tolerance and gain insights about potential avenues for cryopreservation of biological materials. We first use RNAseq to generate transcriptomes of three C. costata larval phenotypic variants: those warm-acclimated in early or late diapause (weak capacity to survive cryopreservation), and those undergoing cold acclimation after diapause entry (extremely freeze tolerant, surviving cryopreservation). We identify mRNA transcripts representing genes and processes that accompany the physiological transition to extreme freeze tolerance and relate cryopreservation survival to the transcriptional profiles of select candidate genes using extended sampling of phenotypic variants. Enhanced capacity for protein folding, refolding and processing appears to be a central theme of extreme freeze tolerance and may allow cold-acclimated larvae to repair or eliminate proteins damaged by freezing (thus mitigating the toxicity of denatured proteins, endoplasmic reticulum stress and subsequent apoptosis). We also find a number of candidate genes (including both known and potentially novel, unannotated sequences) whose expression profiles tightly mirror the change in extreme freeze tolerance status among phenotypic variants.
650    _2
$a aklimatizace $x genetika $7 D000064
650    _2
$a zvířata $7 D000818
650    _2
$a Drosophilidae $x genetika $7 D018428
650    12
$a zmrazování $7 D005615
650    _2
$a hmyz $x genetika $7 D007313
650    _2
$a transkriptom $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hůla, Petr $u Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic. Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic.
700    1_
$a Koštál, Vladimír $u Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
773    0_
$w MED00012574 $t Proceedings. Biological sciences $x 1471-2954 $g Roč. 286, č. 1913 (2019), s. 20192019
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31640516 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214130503 $b ABA008
999    __
$a ok $b bmc $g 1595904 $s 1114261
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 286 $c 1913 $d 20192019 $e 20191023 $i 1471-2954 $m Proceedings - Royal Society. Biological sciences $n Proc R Soc Lond $x MED00012574
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...