Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Linking scaling laws across eukaryotes

IA. Hatton, AP. Dobson, D. Storch, ED. Galbraith, M. Loreau,

. 2019 ; 116 (43) : 21616-21622. [pub] 20191007

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023587

Grantová podpora
666971 European Research Council - International
682602 European Research Council - International

Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023587
003      
CZ-PrNML
005      
20201214130507.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1900492116 $2 doi
035    __
$a (PubMed)31591216
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hatton, Ian A $u Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; i.a.hatton@gmail.com.
245    10
$a Linking scaling laws across eukaryotes / $c IA. Hatton, AP. Dobson, D. Storch, ED. Galbraith, M. Loreau,
520    9_
$a Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.
650    _2
$a zvířata $7 D000818
650    _2
$a velikost těla $x fyziologie $7 D049628
650    _2
$a energetický metabolismus $x fyziologie $7 D004734
650    _2
$a Eukaryota $x fyziologie $7 D056890
650    _2
$a růst a vývoj $x fyziologie $7 D048788
650    12
$a biologické modely $7 D008954
650    _2
$a mortalita $7 D009026
650    _2
$a hustota populace $7 D011156
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Dobson, Andy P $u Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544. Santa Fe Institute, Santa Fe, NM 87501.
700    1_
$a Storch, David $u Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, 110 00 Praha, Czech Republic. Department of Ecology, Faculty of Science, Charles University, 128 44 Praha, Czech Republic.
700    1_
$a Galbraith, Eric D $u ICREA (Catalan Institution for Research and Advanced Studies), 08010 Barcelona, Spain. Department of Mathematics, Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autonoma de Barcelona, 08193 Barcelona, Spain. Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0G4, Canada.
700    1_
$a Loreau, Michel $u Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200 Moulis, France.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 116, č. 43 (2019), s. 21616-21622
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31591216 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214130506 $b ABA008
999    __
$a ok $b bmc $g 1595906 $s 1114263
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 116 $c 43 $d 21616-21622 $e 20191007 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
GRA    __
$a 666971 $p European Research Council $2 International
GRA    __
$a 682602 $p European Research Council $2 International
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...