-
Je něco špatně v tomto záznamu ?
Linking scaling laws across eukaryotes
IA. Hatton, AP. Dobson, D. Storch, ED. Galbraith, M. Loreau,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
666971
European Research Council - International
682602
European Research Council - International
NLK
Free Medical Journals
od 1915
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-01
Open Access Digital Library
od 1915-01-15
PubMed
31591216
DOI
10.1073/pnas.1900492116
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- energetický metabolismus fyziologie MeSH
- Eukaryota fyziologie MeSH
- hustota populace MeSH
- mortalita MeSH
- růst a vývoj fyziologie MeSH
- velikost těla fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023587
- 003
- CZ-PrNML
- 005
- 20201214130507.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1900492116 $2 doi
- 035 __
- $a (PubMed)31591216
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hatton, Ian A $u Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; i.a.hatton@gmail.com.
- 245 10
- $a Linking scaling laws across eukaryotes / $c IA. Hatton, AP. Dobson, D. Storch, ED. Galbraith, M. Loreau,
- 520 9_
- $a Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a velikost těla $x fyziologie $7 D049628
- 650 _2
- $a energetický metabolismus $x fyziologie $7 D004734
- 650 _2
- $a Eukaryota $x fyziologie $7 D056890
- 650 _2
- $a růst a vývoj $x fyziologie $7 D048788
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a mortalita $7 D009026
- 650 _2
- $a hustota populace $7 D011156
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Dobson, Andy P $u Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544. Santa Fe Institute, Santa Fe, NM 87501.
- 700 1_
- $a Storch, David $u Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, 110 00 Praha, Czech Republic. Department of Ecology, Faculty of Science, Charles University, 128 44 Praha, Czech Republic.
- 700 1_
- $a Galbraith, Eric D $u ICREA (Catalan Institution for Research and Advanced Studies), 08010 Barcelona, Spain. Department of Mathematics, Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autonoma de Barcelona, 08193 Barcelona, Spain. Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0G4, Canada.
- 700 1_
- $a Loreau, Michel $u Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200 Moulis, France.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 116, č. 43 (2019), s. 21616-21622
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31591216 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214130506 $b ABA008
- 999 __
- $a ok $b bmc $g 1595906 $s 1114263
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 116 $c 43 $d 21616-21622 $e 20191007 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- GRA __
- $a 666971 $p European Research Council $2 International
- GRA __
- $a 682602 $p European Research Council $2 International
- LZP __
- $a Pubmed-20201125