-
Something wrong with this record ?
High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing
P. Souček, K. Réblová, M. Kramárek, L. Radová, T. Grymová, P. Hujová, T. Kováčová, M. Lexa, L. Grodecká, T. Freiberger,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NV16-34414A
MZ0
CEP Register
Digital library NLK
Full text - Article
NLK
Free Medical Journals
from 2004 to 1 year ago
Freely Accessible Science Journals
from 2004
PubMed Central
from 2009 to 1 year ago
Europe PubMed Central
from 2009 to 1 year ago
- MeSH
- Alternative Splicing * MeSH
- Cell Line MeSH
- Exons * MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- RNA Splice Sites MeSH
- Mutation * MeSH
- Mutagenesis MeSH
- Survival of Motor Neuron 1 Protein chemistry genetics metabolism MeSH
- RNA, Small Nuclear chemistry genetics metabolism MeSH
- Molecular Dynamics Simulation MeSH
- Protein Binding MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
Faculty of Informatics Masaryk University Brno Czech Republic
Medical Genomics RG Central European Institute of Technology Masaryk University Brno Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023657
- 003
- CZ-PrNML
- 005
- 20201214130737.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1080/15476286.2019.1630796 $2 doi
- 035 __
- $a (PubMed)31213135
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Souček, Přemysl $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic. Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
- 245 10
- $a High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing / $c P. Souček, K. Réblová, M. Kramárek, L. Radová, T. Grymová, P. Hujová, T. Kováčová, M. Lexa, L. Grodecká, T. Freiberger,
- 520 9_
- $a Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
- 650 12
- $a alternativní sestřih $7 D017398
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 12
- $a exony $7 D005091
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a mutageneze $7 D016296
- 650 12
- $a mutace $7 D009154
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a místa sestřihu RNA $7 D022821
- 650 _2
- $a RNA malá jaderná $x chemie $x genetika $x metabolismus $7 D012342
- 650 _2
- $a protein přežití motorických neuronů 1 $x chemie $x genetika $x metabolismus $7 D055533
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Réblová, Kamila $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.
- 700 1_
- $a Kramárek, Michal $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
- 700 1_
- $a Radová, Lenka $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.
- 700 1_
- $a Grymová, Tereza $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
- 700 1_
- $a Hujová, Pavla $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
- 700 1_
- $a Kováčová, Tatiana $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.
- 700 1_
- $a Lexa, Matej $u Faculty of Informatics, Masaryk University , Brno , Czech Republic.
- 700 1_
- $a Grodecká, Lucie $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
- 700 1_
- $a Freiberger, Tomáš $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic. Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic. Faculty of Medicine, Masaryk University , Brno , Czech Republic.
- 773 0_
- $w MED00181077 $t RNA biology $x 1555-8584 $g Roč. 16, č. 10 (2019), s. 1364-1376
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31213135 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214130736 $b ABA008
- 999 __
- $a ok $b bmc $g 1595976 $s 1114333
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 16 $c 10 $d 1364-1376 $e 20190619 $i 1555-8584 $m RNA biology $n RNA Biol $x MED00181077
- GRA __
- $a NV16-34414A $p MZ0
- LZP __
- $a Pubmed-20201125