Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing

P. Souček, K. Réblová, M. Kramárek, L. Radová, T. Grymová, P. Hujová, T. Kováčová, M. Lexa, L. Grodecká, T. Freiberger,

. 2019 ; 16 (10) : 1364-1376. [pub] 20190619

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NV16-34414A MZ0 CEP Register

Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023657
003      
CZ-PrNML
005      
20201214130737.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1080/15476286.2019.1630796 $2 doi
035    __
$a (PubMed)31213135
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Souček, Přemysl $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic. Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
245    10
$a High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing / $c P. Souček, K. Réblová, M. Kramárek, L. Radová, T. Grymová, P. Hujová, T. Kováčová, M. Lexa, L. Grodecká, T. Freiberger,
520    9_
$a Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
650    12
$a alternativní sestřih $7 D017398
650    _2
$a buněčné linie $7 D002460
650    _2
$a výpočetní biologie $x metody $7 D019295
650    12
$a exony $7 D005091
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a lidé $7 D006801
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a mutageneze $7 D016296
650    12
$a mutace $7 D009154
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a vazba proteinů $7 D011485
650    _2
$a místa sestřihu RNA $7 D022821
650    _2
$a RNA malá jaderná $x chemie $x genetika $x metabolismus $7 D012342
650    _2
$a protein přežití motorických neuronů 1 $x chemie $x genetika $x metabolismus $7 D055533
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Réblová, Kamila $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.
700    1_
$a Kramárek, Michal $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
700    1_
$a Radová, Lenka $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.
700    1_
$a Grymová, Tereza $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
700    1_
$a Hujová, Pavla $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
700    1_
$a Kováčová, Tatiana $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.
700    1_
$a Lexa, Matej $u Faculty of Informatics, Masaryk University , Brno , Czech Republic.
700    1_
$a Grodecká, Lucie $u Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.
700    1_
$a Freiberger, Tomáš $u Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic. Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic. Faculty of Medicine, Masaryk University , Brno , Czech Republic.
773    0_
$w MED00181077 $t RNA biology $x 1555-8584 $g Roč. 16, č. 10 (2019), s. 1364-1376
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31213135 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214130736 $b ABA008
999    __
$a ok $b bmc $g 1595976 $s 1114333
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 16 $c 10 $d 1364-1376 $e 20190619 $i 1555-8584 $m RNA biology $n RNA Biol $x MED00181077
GRA    __
$a NV16-34414A $p MZ0
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...