Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules

PP. Massion, S. Antic, S. Ather, C. Arteta, J. Brabec, H. Chen, J. Declerck, D. Dufek, W. Hickes, T. Kadir, J. Kunst, BA. Landman, RF. Munden, P. Novotny, H. Peschl, LC. Pickup, C. Santos, GT. Smith, A. Talwar, F. Gleeson,

. 2020 ; 202 (2) : 241-249. [pub] 20200715

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20024880

Grantová podpora
U01 CA152662 NCI NIH HHS - United States
U01 CA186145 NCI NIH HHS - United States

Rationale: The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed.Objectives: To develop and validate a deep learning method to improve the management of IPNs.Methods: A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions.Measurements and Main Results: The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts.Conclusions: This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20024880
003      
CZ-PrNML
005      
20201222154932.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1164/rccm.201903-0505OC $2 doi
035    __
$a (PubMed)32326730
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Massion, Pierre P $u Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Division of Allergy, Pulmonary and Critical Care Medicine. Pulmonary and Critical Care Section, Medical Service, Veterans Affairs, and.
245    10
$a Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules / $c PP. Massion, S. Antic, S. Ather, C. Arteta, J. Brabec, H. Chen, J. Declerck, D. Dufek, W. Hickes, T. Kadir, J. Kunst, BA. Landman, RF. Munden, P. Novotny, H. Peschl, LC. Pickup, C. Santos, GT. Smith, A. Talwar, F. Gleeson,
520    9_
$a Rationale: The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed.Objectives: To develop and validate a deep learning method to improve the management of IPNs.Methods: A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions.Measurements and Main Results: The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts.Conclusions: This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.
650    _2
$a algoritmy $7 D000465
650    12
$a deep learning $7 D000077321
650    _2
$a lidé $7 D006801
650    _2
$a nádory plic $x diagnostické zobrazování $x epidemiologie $x patofyziologie $7 D008175
650    _2
$a mnohočetné plicní uzly $x diagnostické zobrazování $7 D055613
650    _2
$a neuronové sítě $7 D016571
650    _2
$a rentgenový obraz - interpretace počítačová $x metody $7 D011857
650    _2
$a počítačová rentgenová tomografie $x metody $7 D014057
651    _2
$a Spojené státy americké $x epidemiologie $7 D014481
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Antic, Sanja $u Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Division of Allergy, Pulmonary and Critical Care Medicine.
700    1_
$a Ather, Sarim $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
700    1_
$a Arteta, Carlos $u Optellum Ltd., Oxford, United Kingdom.
700    1_
$a Brabec, Jan $u Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Chen, Heidi $u Department of Biostatistics, and.
700    1_
$a Declerck, Jerome $u Optellum Ltd., Oxford, United Kingdom.
700    1_
$a Dufek, David $u Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Hickes, William $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
700    1_
$a Kadir, Timor $u Optellum Ltd., Oxford, United Kingdom.
700    1_
$a Kunst, Jonas $u Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Landman, Bennett A $u Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee; and.
700    1_
$a Munden, Reginald F $u Department of Radiology, Wake Forest Baptist Health, Winston Salem, North Carolina.
700    1_
$a Novotny, Petr $u Optellum Ltd., Oxford, United Kingdom.
700    1_
$a Peschl, Heiko $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
700    1_
$a Pickup, Lyndsey C $u Optellum Ltd., Oxford, United Kingdom.
700    1_
$a Santos, Catarina $u Optellum Ltd., Oxford, United Kingdom.
700    1_
$a Smith, Gary T $u Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee. Department of Radiology, Tennessee Valley Healthcare System, Nashville, Tennessee.
700    1_
$a Talwar, Ambika $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
700    1_
$a Gleeson, Fergus $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
773    0_
$w MED00000297 $t American journal of respiratory and critical care medicine $x 1535-4970 $g Roč. 202, č. 2 (2020), s. 241-249
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32326730 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154928 $b ABA008
999    __
$a ok $b bmc $g 1599025 $s 1115566
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 202 $c 2 $d 241-249 $e 20200715 $i 1535-4970 $m American journal of respiratory and critical care medicine $n Am J Respir Crit Care Med $x MED00000297
GRA    __
$a U01 CA152662 $p NCI NIH HHS $2 United States
GRA    __
$a U01 CA186145 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...