-
Je něco špatně v tomto záznamu ?
Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules
PP. Massion, S. Antic, S. Ather, C. Arteta, J. Brabec, H. Chen, J. Declerck, D. Dufek, W. Hickes, T. Kadir, J. Kunst, BA. Landman, RF. Munden, P. Novotny, H. Peschl, LC. Pickup, C. Santos, GT. Smith, A. Talwar, F. Gleeson,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U01 CA152662
NCI NIH HHS - United States
U01 CA186145
NCI NIH HHS - United States
NLK
Free Medical Journals
od 1997-07-01 do Před 1 rokem
Freely Accessible Science Journals
od 1997 do Před 1 rokem
Open Access Digital Library
od 1998-01-01
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- lidé MeSH
- mnohočetné plicní uzly diagnostické zobrazování MeSH
- nádory plic diagnostické zobrazování epidemiologie patofyziologie MeSH
- neuronové sítě MeSH
- počítačová rentgenová tomografie metody MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Spojené státy americké MeSH
Rationale: The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed.Objectives: To develop and validate a deep learning method to improve the management of IPNs.Methods: A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions.Measurements and Main Results: The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts.Conclusions: This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.
Department of Biostatistics and
Department of Electrical Engineering Vanderbilt University Nashville Tennessee
Department of Radiology Wake Forest Baptist Health Winston Salem North Carolina
Faculty of Medicine Masaryk University Brno Czech Republic
Optellum Ltd Oxford United Kingdom
Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024880
- 003
- CZ-PrNML
- 005
- 20201222154932.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1164/rccm.201903-0505OC $2 doi
- 035 __
- $a (PubMed)32326730
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Massion, Pierre P $u Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Division of Allergy, Pulmonary and Critical Care Medicine. Pulmonary and Critical Care Section, Medical Service, Veterans Affairs, and.
- 245 10
- $a Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules / $c PP. Massion, S. Antic, S. Ather, C. Arteta, J. Brabec, H. Chen, J. Declerck, D. Dufek, W. Hickes, T. Kadir, J. Kunst, BA. Landman, RF. Munden, P. Novotny, H. Peschl, LC. Pickup, C. Santos, GT. Smith, A. Talwar, F. Gleeson,
- 520 9_
- $a Rationale: The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed.Objectives: To develop and validate a deep learning method to improve the management of IPNs.Methods: A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions.Measurements and Main Results: The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts.Conclusions: This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nádory plic $x diagnostické zobrazování $x epidemiologie $x patofyziologie $7 D008175
- 650 _2
- $a mnohočetné plicní uzly $x diagnostické zobrazování $7 D055613
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a rentgenový obraz - interpretace počítačová $x metody $7 D011857
- 650 _2
- $a počítačová rentgenová tomografie $x metody $7 D014057
- 651 _2
- $a Spojené státy americké $x epidemiologie $7 D014481
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Antic, Sanja $u Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Division of Allergy, Pulmonary and Critical Care Medicine.
- 700 1_
- $a Ather, Sarim $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
- 700 1_
- $a Arteta, Carlos $u Optellum Ltd., Oxford, United Kingdom.
- 700 1_
- $a Brabec, Jan $u Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Chen, Heidi $u Department of Biostatistics, and.
- 700 1_
- $a Declerck, Jerome $u Optellum Ltd., Oxford, United Kingdom.
- 700 1_
- $a Dufek, David $u Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Hickes, William $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
- 700 1_
- $a Kadir, Timor $u Optellum Ltd., Oxford, United Kingdom.
- 700 1_
- $a Kunst, Jonas $u Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Landman, Bennett A $u Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee; and.
- 700 1_
- $a Munden, Reginald F $u Department of Radiology, Wake Forest Baptist Health, Winston Salem, North Carolina.
- 700 1_
- $a Novotny, Petr $u Optellum Ltd., Oxford, United Kingdom.
- 700 1_
- $a Peschl, Heiko $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
- 700 1_
- $a Pickup, Lyndsey C $u Optellum Ltd., Oxford, United Kingdom.
- 700 1_
- $a Santos, Catarina $u Optellum Ltd., Oxford, United Kingdom.
- 700 1_
- $a Smith, Gary T $u Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee. Department of Radiology, Tennessee Valley Healthcare System, Nashville, Tennessee.
- 700 1_
- $a Talwar, Ambika $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
- 700 1_
- $a Gleeson, Fergus $u Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
- 773 0_
- $w MED00000297 $t American journal of respiratory and critical care medicine $x 1535-4970 $g Roč. 202, č. 2 (2020), s. 241-249
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32326730 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154928 $b ABA008
- 999 __
- $a ok $b bmc $g 1599025 $s 1115566
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 202 $c 2 $d 241-249 $e 20200715 $i 1535-4970 $m American journal of respiratory and critical care medicine $n Am J Respir Crit Care Med $x MED00000297
- GRA __
- $a U01 CA152662 $p NCI NIH HHS $2 United States
- GRA __
- $a U01 CA186145 $p NCI NIH HHS $2 United States
- LZP __
- $a Pubmed-20201125