-
Je něco špatně v tomto záznamu ?
Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics
P. Akhtar, PJ. Nowakowski, W. Wang, TN. Do, S. Zhao, G. Siligardi, G. Garab, JR. Shen, HS. Tan, PH. Lambrev,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Elsevier Open Access Journals
od 1995-02-14 do 2023-04-30
Elsevier Open Archive Journals
od 1995-02-14 do Před 1 rokem
- MeSH
- časové faktory MeSH
- Chlorophyta metabolismus MeSH
- cirkulární dichroismus MeSH
- fluorescenční spektrometrie MeSH
- přenos energie * MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.
Biological Research Centre Szeged Hungary
Department of Physics Faculty of Science University of Ostrava Czech Republic
Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
ELI ALPS ELI Nonprofit Ltd Szeged Hungary
Photosynthesis Research Centre Chinese Academy of Sciences Beijing China
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024914
- 003
- CZ-PrNML
- 005
- 20201222160030.0
- 007
- ta
- 008
- 201125s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2020.148191 $2 doi
- 035 __
- $a (PubMed)32201306
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Akhtar, Parveen $u Biological Research Centre, Szeged, Hungary; ELI-ALPS, ELI Nonprofit Ltd., Szeged, Hungary.
- 245 10
- $a Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics / $c P. Akhtar, PJ. Nowakowski, W. Wang, TN. Do, S. Zhao, G. Siligardi, G. Garab, JR. Shen, HS. Tan, PH. Lambrev,
- 520 9_
- $a Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.
- 650 _2
- $a Chlorophyta $x metabolismus $7 D000460
- 650 _2
- $a cirkulární dichroismus $7 D002942
- 650 12
- $a přenos energie $7 D004735
- 650 _2
- $a světlosběrné proteinové komplexy $x metabolismus $7 D045342
- 650 _2
- $a fluorescenční spektrometrie $7 D013050
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nowakowski, Paweł J $u Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
- 700 1_
- $a Wang, Wenda $u Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China.
- 700 1_
- $a Do, Thanh Nhut $u Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
- 700 1_
- $a Zhao, Songhao $u Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China.
- 700 1_
- $a Siligardi, Giuliano $u Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
- 700 1_
- $a Garab, Győző $u Biological Research Centre, Szeged, Hungary; Department of Physics, Faculty of Science, University of Ostrava, Czech Republic.
- 700 1_
- $a Shen, Jian-Ren $u Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- 700 1_
- $a Tan, Howe-Siang $u Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. Electronic address: HoweSiang@ntu.edu.sg.
- 700 1_
- $a Lambrev, Petar H $u Biological Research Centre, Szeged, Hungary. Electronic address: lambrev.petar@brc.hu.
- 773 0_
- $w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1861, č. 7 (2020), s. 148191
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32201306 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222160026 $b ABA008
- 999 __
- $a ok $b bmc $g 1599059 $s 1115600
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 1861 $c 7 $d 148191 $e 20200320 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
- LZP __
- $a Pubmed-20201125