-
Je něco špatně v tomto záznamu ?
Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants
R. Höhner, M. Pribil, M. Herbstová, LS. Lopez, HH. Kunz, M. Li, M. Wood, V. Svoboda, S. Puthiyaveetil, D. Leister, H. Kirchhoff,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
od 1915 do Před 6 měsíci
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-01
Open Access Digital Library
od 1915-01-15
PubMed
32541018
DOI
10.1073/pnas.2005832117
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- Magnoliopsida fyziologie MeSH
- plastocyanin metabolismus MeSH
- počítačová simulace MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.
Institute of Biological Chemistry Washington State University Pullman WA 99164 6340
School of Biological Sciences Washington State University Pullman WA 99164 4236
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024940
- 003
- CZ-PrNML
- 005
- 20201222154944.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.2005832117 $2 doi
- 035 __
- $a (PubMed)32541018
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Höhner, Ricarda $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.
- 245 10
- $a Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants / $c R. Höhner, M. Pribil, M. Herbstová, LS. Lopez, HH. Kunz, M. Li, M. Wood, V. Svoboda, S. Puthiyaveetil, D. Leister, H. Kirchhoff,
- 520 9_
- $a In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a transport elektronů $7 D004579
- 650 _2
- $a regulace genové exprese u rostlin $x fyziologie $7 D018506
- 650 _2
- $a Magnoliopsida $x fyziologie $7 D019684
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a fotosystém I - proteinový komplex $x metabolismus $7 D045331
- 650 _2
- $a fotosystém II - proteinový komplex $x metabolismus $7 D045332
- 650 _2
- $a plastocyanin $x metabolismus $7 D010970
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Pribil, Mathias $u Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark. Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany.
- 700 1_
- $a Herbstová, Miroslava $u Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- 700 1_
- $a Lopez, Laura Susanna $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.
- 700 1_
- $a Kunz, Hans-Henning $u School of Biological Sciences, Washington State University, Pullman, WA 99164-4236.
- 700 1_
- $a Li, Meng $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.
- 700 1_
- $a Wood, Magnus $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.
- 700 1_
- $a Svoboda, Vaclav $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.
- 700 1_
- $a Puthiyaveetil, Sujith $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.
- 700 1_
- $a Leister, Dario $u Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany; leister@lmu.de kirchhh@wsu.edu.
- 700 1_
- $a Kirchhoff, Helmut $u Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; leister@lmu.de kirchhh@wsu.edu.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 117, č. 26 (2020), s. 15354-15362
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32541018 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154940 $b ABA008
- 999 __
- $a ok $b bmc $g 1599085 $s 1115626
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 117 $c 26 $d 15354-15362 $e 20200615 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20201125