-
Je něco špatně v tomto záznamu ?
Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments
V. Henrichs, L. Grycova, C. Barinka, Z. Nahacka, J. Neuzil, S. Diez, J. Rohlena, M. Braun, Z. Lansky,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
- MeSH
- adaptorové proteiny vezikulární transportní genetika izolace a purifikace metabolismus MeSH
- fluorescenční mikroskopie MeSH
- kineziny genetika izolace a purifikace metabolismus MeSH
- luminescentní proteiny genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- mitochondrie metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proteiny tau genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- vnitřně neuspořádané proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024949
- 003
- CZ-PrNML
- 005
- 20201222153623.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-020-16972-5 $2 doi
- 035 __
- $a (PubMed)32561740
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Henrichs, Verena $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic. Faculty of Science, Charles University in Prague, 12800, Prague, Czech Republic.
- 245 10
- $a Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments / $c V. Henrichs, L. Grycova, C. Barinka, Z. Nahacka, J. Neuzil, S. Diez, J. Rohlena, M. Braun, Z. Lansky,
- 520 9_
- $a Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.
- 650 _2
- $a adaptorové proteiny vezikulární transportní $x genetika $x izolace a purifikace $x metabolismus $7 D033942
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a vnitřně neuspořádané proteiny $x genetika $x metabolismus $7 D064267
- 650 _2
- $a kineziny $x genetika $x izolace a purifikace $x metabolismus $7 D016547
- 650 _2
- $a luminescentní proteiny $x genetika $x metabolismus $7 D008164
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a fluorescenční mikroskopie $7 D008856
- 650 _2
- $a mikrotubuly $x metabolismus $7 D008870
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a rekombinantní proteiny $x genetika $x metabolismus $7 D011994
- 650 _2
- $a proteiny tau $x genetika $x metabolismus $7 D016875
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Grycova, Lenka $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic.
- 700 1_
- $a Barinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic.
- 700 1_
- $a Nahacka, Zuzana $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic.
- 700 1_
- $a Neuzil, Jiri $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic. School of Medical Science, Griffith University, Southport, QLD, 4222, Australia.
- 700 1_
- $a Diez, Stefan $u B CUBE - Center of Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307, Dresden, Sachsen, Germany. Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Sachsen, Germany.
- 700 1_
- $a Rohlena, Jakub $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic.
- 700 1_
- $a Braun, Marcus $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic. marcus.braun@ibt.cas.cz.
- 700 1_
- $a Lansky, Zdenek $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic. zdenek.lansky@ibt.cas.cz.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 11, č. 1 (2020), s. 3123
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32561740 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222153620 $b ABA008
- 999 __
- $a ok $b bmc $g 1599094 $s 1115635
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 11 $c 1 $d 3123 $e 20200619 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20201125