-
Je něco špatně v tomto záznamu ?
DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs
A. Roithová, Z. Feketová, Š. Vaňáčová, D. Staněk,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
32374871
DOI
10.1093/nar/gkaa301
Knihovny.cz E-zdroje
- MeSH
- exoribonukleasy metabolismus MeSH
- HeLa buňky MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- organely metabolismus MeSH
- proteinový komplex SMN metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- protoonkogenní proteiny metabolismus MeSH
- RNA malá jaderná chemie metabolismus MeSH
- sekvence nukleotidů MeSH
- stabilita RNA MeSH
- transport RNA * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3' end and associate with DIS3L2 3'→5' exoribonuclease and LSm proteins. Finally, inhibition of 5'→3' exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024951
- 003
- CZ-PrNML
- 005
- 20201222153625.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkaa301 $2 doi
- 035 __
- $a (PubMed)32374871
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Roithová, Adriana $u Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic. Faculty of Science, Charles University, 128 00 Prague, Czech Republic.
- 245 10
- $a DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs / $c A. Roithová, Z. Feketová, Š. Vaňáčová, D. Staněk,
- 520 9_
- $a Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3' end and associate with DIS3L2 3'→5' exoribonuclease and LSm proteins. Finally, inhibition of 5'→3' exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a exoribonukleasy $x metabolismus $7 D005095
- 650 _2
- $a HeLa buňky $7 D006367
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a organely $x metabolismus $7 D015388
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a protoonkogenní proteiny $x metabolismus $7 D011518
- 650 _2
- $a stabilita RNA $7 D020871
- 650 12
- $a transport RNA $7 D034443
- 650 _2
- $a RNA malá jaderná $x chemie $x metabolismus $7 D012342
- 650 _2
- $a proteiny vázající RNA $x metabolismus $7 D016601
- 650 _2
- $a proteinový komplex SMN $x metabolismus $7 D055532
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Feketová, Zuzana $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00 Brno, Czech Republic.
- 700 1_
- $a Vaňáčová, Štěpánka $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00 Brno, Czech Republic.
- 700 1_
- $a Staněk, David $u Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 48, č. 11 (2020), s. 6184-6197
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32374871 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222153621 $b ABA008
- 999 __
- $a ok $b bmc $g 1599096 $s 1115637
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 48 $c 11 $d 6184-6197 $e 20200619 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20201125