-
Je něco špatně v tomto záznamu ?
The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes
M. Šiková, J. Wiedermannová, M. Převorovský, I. Barvík, P. Sudzinová, O. Kofroňová, O. Benada, H. Šanderová, C. Condon, L. Krásný,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LM2015055
Czech Research Infrastructure for Systems Biology C4SYS - International
LM2015062
Light Microscopy Core Facility, IMG ASCR, Prague, Czech Republic - International
CZ.2.16/3.1.00/21547
OPPK - International
LO1419
Ministry of Education, Youth, and Sports of the Czech Republic - International
LO1509
Ministry of Education, Youth, and Sports of the Czech Republic - International
P305/12/G034
Czech Science Foundation - International
19-12956S
Czech Science Foundation - International
Agence Nationale de la Recherche (ARNr-QC) and the Labex (Dynamo) program - International
NLK
Free Medical Journals
od 1982 do Před 1 rokem
PubMed Central
od 1982
Europe PubMed Central
od 1982 do Před 1 rokem
Open Access Digital Library
od 1997-01-01
Open Access Digital Library
od 1997-01-01
Medline Complete (EBSCOhost)
od 1997-01-02 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
31840842
DOI
10.15252/embj.2019102500
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis enzymologie genetika MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriální RNA genetika metabolismus MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- exoribonukleasy metabolismus MeSH
- genetická transkripce MeSH
- messenger RNA genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Division of Biomolecular Physics Institute of Physics Charles University Prague 2 Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague 4 Czech Republic
UMR8261 CNRS Université de Paris Institut de Biologie Physico Chimique Paris France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025207
- 003
- CZ-PrNML
- 005
- 20201222153737.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.15252/embj.2019102500 $2 doi
- 035 __
- $a (PubMed)31840842
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Šiková, Michaela $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 245 14
- $a The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes / $c M. Šiková, J. Wiedermannová, M. Převorovský, I. Barvík, P. Sudzinová, O. Kofroňová, O. Benada, H. Šanderová, C. Condon, L. Krásný,
- 520 9_
- $a RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.
- 650 _2
- $a Bacillus subtilis $x enzymologie $x genetika $7 D001412
- 650 _2
- $a bakteriální proteiny $x metabolismus $7 D001426
- 650 _2
- $a DNA řízené RNA-polymerasy $x metabolismus $7 D012321
- 650 _2
- $a exoribonukleasy $x metabolismus $7 D005095
- 650 _2
- $a regulace genové exprese u bakterií $7 D015964
- 650 _2
- $a bakteriální RNA $x genetika $x metabolismus $7 D012329
- 650 _2
- $a messenger RNA $x genetika $x metabolismus $7 D012333
- 650 _2
- $a genetická transkripce $7 D014158
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wiedermannová, Jana $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 700 1_
- $a Převorovský, Martin $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
- 700 1_
- $a Barvík, Ivan $u Division of Biomolecular Physics, Institute of Physics, Charles University, Prague 2, Czech Republic.
- 700 1_
- $a Sudzinová, Petra $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 700 1_
- $a Kofroňová, Olga $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 700 1_
- $a Benada, Oldřich $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 700 1_
- $a Šanderová, Hana $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 700 1_
- $a Condon, Ciarán $u UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France.
- 700 1_
- $a Krásný, Libor $u Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
- 773 0_
- $w MED00001509 $t The EMBO journal $x 1460-2075 $g Roč. 39, č. 3 (2020), s. e102500
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31840842 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222153733 $b ABA008
- 999 __
- $a ok $b bmc $g 1599352 $s 1115893
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 39 $c 3 $d e102500 $e 20191216 $i 1460-2075 $m EMBO journal $n EMBO J $x MED00001509
- GRA __
- $a LM2015055 $p Czech Research Infrastructure for Systems Biology C4SYS $2 International
- GRA __
- $a LM2015062 $p Light Microscopy Core Facility, IMG ASCR, Prague, Czech Republic $2 International
- GRA __
- $a CZ.2.16/3.1.00/21547 $p OPPK $2 International
- GRA __
- $a LO1419 $p Ministry of Education, Youth, and Sports of the Czech Republic $2 International
- GRA __
- $a LO1509 $p Ministry of Education, Youth, and Sports of the Czech Republic $2 International
- GRA __
- $a P305/12/G034 $p Czech Science Foundation $2 International
- GRA __
- $a 19-12956S $p Czech Science Foundation $2 International
- GRA __
- $p Agence Nationale de la Recherche (ARNr-QC) and the Labex (Dynamo) program $2 International
- LZP __
- $a Pubmed-20201125