-
Something wrong with this record ?
Interaction Pathways and Structure-Chemical Transformations of Alginate Gels in Physiological Environments
M. Urbanova, M. Pavelkova, J. Czernek, K. Kubova, J. Vyslouzil, A. Pechova, D. Molinkova, J. Vyslouzil, D. Vetchy, J. Brus,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Alginates chemistry pharmacology MeSH
- Biocompatible Materials chemistry pharmacology MeSH
- Cellular Microenvironment drug effects MeSH
- Gels chemistry pharmacology MeSH
- Metals chemistry MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Cross-Linking Reagents chemistry pharmacology MeSH
- Hydrogen Bonding drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The remarkably diverse affinity of alginate (ALG) macromolecules for polyvalent metal ions makes cross-linked alginate gels an outstanding biomaterial. Surprisingly, however, very little is known about their interactions and structural transformations in physiological environments. To bridge this gap, we prepared a set of ALG gels cross-linked by various ions and monitored their structural changes at different media simulating gastric and intestinal fluids and cellular environments. For these studies, we used multinuclear solid-state NMR (ss-NMR) spectroscopy, which revealed a range of competitive ion-exchange and interconversion reactions, the rate of which strongly depended on the nature of the cross-linking metal ions. Depending on the environment, ALG chains adopted different forms, such as acidic (hydro)gels stabilized by strong hydrogen bonds, and/or weakly cross-linked Na/H-gels. Simultaneously, the exchanged polyvalent ions extensively interacted with the environment even forming in some cases insoluble phosphate microdomains directly deposited in the ALG bead matrix. The extent of the transformations and incorporation of secondary phases into the alginate beads followed the size and electronegativity of the cross-linking ions. Overall, the applied combination of various macroscopic and biological tests with multinuclear ss-NMR revealed a complex pathway of alginate beads transformations in physiological environments.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025501
- 003
- CZ-PrNML
- 005
- 20201222155229.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.biomac.9b01052 $2 doi
- 035 __
- $a (PubMed)31603656
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Urbanova, Martina $u Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovsky sq. 2 , 162 06 Prague 6 , Czech Republic.
- 245 10
- $a Interaction Pathways and Structure-Chemical Transformations of Alginate Gels in Physiological Environments / $c M. Urbanova, M. Pavelkova, J. Czernek, K. Kubova, J. Vyslouzil, A. Pechova, D. Molinkova, J. Vyslouzil, D. Vetchy, J. Brus,
- 520 9_
- $a The remarkably diverse affinity of alginate (ALG) macromolecules for polyvalent metal ions makes cross-linked alginate gels an outstanding biomaterial. Surprisingly, however, very little is known about their interactions and structural transformations in physiological environments. To bridge this gap, we prepared a set of ALG gels cross-linked by various ions and monitored their structural changes at different media simulating gastric and intestinal fluids and cellular environments. For these studies, we used multinuclear solid-state NMR (ss-NMR) spectroscopy, which revealed a range of competitive ion-exchange and interconversion reactions, the rate of which strongly depended on the nature of the cross-linking metal ions. Depending on the environment, ALG chains adopted different forms, such as acidic (hydro)gels stabilized by strong hydrogen bonds, and/or weakly cross-linked Na/H-gels. Simultaneously, the exchanged polyvalent ions extensively interacted with the environment even forming in some cases insoluble phosphate microdomains directly deposited in the ALG bead matrix. The extent of the transformations and incorporation of secondary phases into the alginate beads followed the size and electronegativity of the cross-linking ions. Overall, the applied combination of various macroscopic and biological tests with multinuclear ss-NMR revealed a complex pathway of alginate beads transformations in physiological environments.
- 650 _2
- $a algináty $x chemie $x farmakologie $7 D000464
- 650 _2
- $a biokompatibilní materiály $x chemie $x farmakologie $7 D001672
- 650 _2
- $a buněčné mikroprostředí $x účinky léků $7 D060833
- 650 _2
- $a reagencia zkříženě vázaná $x chemie $x farmakologie $7 D003432
- 650 _2
- $a gely $x chemie $x farmakologie $7 D005782
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vodíková vazba $x účinky léků $7 D006860
- 650 _2
- $a magnetická rezonanční spektroskopie $7 D009682
- 650 _2
- $a kovy $x chemie $7 D008670
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pavelkova, Miroslava
- 700 1_
- $a Czernek, Jiri $u Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovsky sq. 2 , 162 06 Prague 6 , Czech Republic.
- 700 1_
- $a Kubova, Katerina
- 700 1_
- $a Vyslouzil, Jakub
- 700 1_
- $a Pechova, Alena
- 700 1_
- $a Molinkova, Dobromila
- 700 1_
- $a Vyslouzil, Jan $u Department of Biochemistry, Faculty of Science , Masaryk University , Kotlarska 267/2 , 611 37 , Brno , Czech Republic.
- 700 1_
- $a Vetchy, David
- 700 1_
- $a Brus, Jiri $u Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovsky sq. 2 , 162 06 Prague 6 , Czech Republic.
- 773 0_
- $w MED00006456 $t Biomacromolecules $x 1526-4602 $g Roč. 20, č. 11 (2019), s. 4158-4170
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31603656 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155225 $b ABA008
- 999 __
- $a ok $b bmc $g 1599646 $s 1116187
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 20 $c 11 $d 4158-4170 $e 20191023 $i 1526-4602 $m Biomacromolecules $n Biomacromolecules $x MED00006456
- LZP __
- $a Pubmed-20201125