• Something wrong with this record ?

An EEG Database and Its Initial Benchmark Emotion Classification Performance

A. Seal, PPN. Reddy, P. Chaithanya, A. Meghana, K. Jahnavi, O. Krejcar, R. Hudak

. 2020 ; 2020 (-) : 8303465. [pub] 20200803

Language English Country United States

Document type Journal Article

Human emotion recognition has been a major field of research in the last decades owing to its noteworthy academic and industrial applications. However, most of the state-of-the-art methods identified emotions after analyzing facial images. Emotion recognition using electroencephalogram (EEG) signals has got less attention. However, the advantage of using EEG signals is that it can capture real emotion. However, very few EEG signals databases are publicly available for affective computing. In this work, we present a database consisting of EEG signals of 44 volunteers. Twenty-three out of forty-four are females. A 32 channels CLARITY EEG traveler sensor is used to record four emotional states namely, happy, fear, sad, and neutral of subjects by showing 12 videos. So, 3 video files are devoted to each emotion. Participants are mapped with the emotion that they had felt after watching each video. The recorded EEG signals are considered further to classify four types of emotions based on discrete wavelet transform and extreme learning machine (ELM) for reporting the initial benchmark classification performance. The ELM algorithm is used for channel selection followed by subband selection. The proposed method performs the best when features are captured from the gamma subband of the FP1-F7 channel with 94.72% accuracy. The presented database would be available to the researchers for affective recognition applications.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21020271
003      
CZ-PrNML
005      
20210830101905.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2020/8303465 $2 doi
035    __
$a (PubMed)32831902
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Seal, Ayan $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India $u Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, 50003, Czech Republic
245    13
$a An EEG Database and Its Initial Benchmark Emotion Classification Performance / $c A. Seal, PPN. Reddy, P. Chaithanya, A. Meghana, K. Jahnavi, O. Krejcar, R. Hudak
520    9_
$a Human emotion recognition has been a major field of research in the last decades owing to its noteworthy academic and industrial applications. However, most of the state-of-the-art methods identified emotions after analyzing facial images. Emotion recognition using electroencephalogram (EEG) signals has got less attention. However, the advantage of using EEG signals is that it can capture real emotion. However, very few EEG signals databases are publicly available for affective computing. In this work, we present a database consisting of EEG signals of 44 volunteers. Twenty-three out of forty-four are females. A 32 channels CLARITY EEG traveler sensor is used to record four emotional states namely, happy, fear, sad, and neutral of subjects by showing 12 videos. So, 3 video files are devoted to each emotion. Participants are mapped with the emotion that they had felt after watching each video. The recorded EEG signals are considered further to classify four types of emotions based on discrete wavelet transform and extreme learning machine (ELM) for reporting the initial benchmark classification performance. The ELM algorithm is used for channel selection followed by subband selection. The proposed method performs the best when features are captured from the gamma subband of the FP1-F7 channel with 94.72% accuracy. The presented database would be available to the researchers for affective recognition applications.
650    12
$a algoritmy $7 D000465
650    _2
$a benchmarking $7 D019985
650    _2
$a mozek $x anatomie a histologie $x fyziologie $7 D001921
650    _2
$a mozkové vlny $x fyziologie $7 D058256
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a databáze faktografické $7 D016208
650    _2
$a elektroencefalografie $x metody $x statistika a číselné údaje $7 D004569
650    _2
$a emoce $x klasifikace $x fyziologie $7 D004644
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a matematické pojmy $7 D055641
650    _2
$a neuronové sítě $7 D016571
650    _2
$a světelná stimulace $7 D010775
650    _2
$a audiovizuální záznam $7 D014741
655    _2
$a časopisecké články $7 D016428
700    1_
$a Reddy, Puthi Prem Nivesh $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
700    1_
$a Chaithanya, Pingali $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
700    1_
$a Meghana, Arramada $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
700    1_
$a Jahnavi, Kamireddy $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
700    1_
$a Krejcar, Ondrej $u Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, 50003, Czech Republic $u Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
700    1_
$a Hudak, Radovan $u Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 904200 Kosice, Slovakia
773    0_
$w MED00173439 $t Computational and mathematical methods in medicine $x 1748-6718 $g Roč. 2020, č. - (2020), s. 8303465
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32831902 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101905 $b ABA008
999    __
$a ok $b bmc $g 1690950 $s 1140717
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 2020 $c - $d 8303465 $e 20200803 $i 1748-6718 $m Computational and mathematical methods in medicine $n Comput Math Methods Med $x MED00173439
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...