• Je něco špatně v tomto záznamu ?

Cerebral blood volume and apparent diffusion coefficient - Valuable predictors of non-response to bevacizumab treatment in patients with recurrent glioblastoma

L. Petrova, P. Korfiatis, O. Petr, DH. LaChance, I. Parney, JC. Buckner, BJ. Erickson,

. 2019 ; 405 (-) : 116433. [pub] 20190823

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025580

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The core of standard of care for newly diagnosed GBM was established in 2005 and includes maximum feasible surgical resection followed by radiation and temozolomide, with subsequent temozolomide with or without tumor-treating fields. Unfortunately, nearly all patients experience a recurrence. Bevacizumab (BV) is a commonly used second-line agent for such recurrences, but it has not been shown to impact overall survival, and short-term response is variable. METHODS: We collected MRI perfusion and diffusion images from 54 subjects with recurrent GBM treated only with radiation and temozolomide. They were subsequently treated with BV. Using machine learning, we created a model to predict short term response (6 months) and overall survival. We set time thresholds to maximize the separation of responders/survivors versus non-responders/short survivors. RESULTS: We were able to segregate 21 (68%) of 31 subjects into unlikely to respond categories based on Progression Free Survival at 6 months (PFS6) criteria. Twenty-two (69%) of 32 subjects could similarly be identified as unlikely to survive long using the machine learning algorithm. CONCLUSION: With the use of machine learning techniques to evaluate imaging features derived from pre- and post-treatment multimodal MRI, it is possible to identify an important fraction of patients who are either highly unlikely to respond, or highly likely to respond. This can be helpful is selecting patients that either should or should not be treated with BV.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025580
003      
CZ-PrNML
005      
20201222160302.0
007      
ta
008      
201125s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jns.2019.116433 $2 doi
035    __
$a (PubMed)31476621
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Petrova, Lucie $u Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; Austria and Department of Neurosurgery, Military Hospital in Prague, 16902 Praha 6, Czech Republic.
245    10
$a Cerebral blood volume and apparent diffusion coefficient - Valuable predictors of non-response to bevacizumab treatment in patients with recurrent glioblastoma / $c L. Petrova, P. Korfiatis, O. Petr, DH. LaChance, I. Parney, JC. Buckner, BJ. Erickson,
520    9_
$a BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The core of standard of care for newly diagnosed GBM was established in 2005 and includes maximum feasible surgical resection followed by radiation and temozolomide, with subsequent temozolomide with or without tumor-treating fields. Unfortunately, nearly all patients experience a recurrence. Bevacizumab (BV) is a commonly used second-line agent for such recurrences, but it has not been shown to impact overall survival, and short-term response is variable. METHODS: We collected MRI perfusion and diffusion images from 54 subjects with recurrent GBM treated only with radiation and temozolomide. They were subsequently treated with BV. Using machine learning, we created a model to predict short term response (6 months) and overall survival. We set time thresholds to maximize the separation of responders/survivors versus non-responders/short survivors. RESULTS: We were able to segregate 21 (68%) of 31 subjects into unlikely to respond categories based on Progression Free Survival at 6 months (PFS6) criteria. Twenty-two (69%) of 32 subjects could similarly be identified as unlikely to survive long using the machine learning algorithm. CONCLUSION: With the use of machine learning techniques to evaluate imaging features derived from pre- and post-treatment multimodal MRI, it is possible to identify an important fraction of patients who are either highly unlikely to respond, or highly likely to respond. This can be helpful is selecting patients that either should or should not be treated with BV.
650    _2
$a dospělí $7 D000328
650    _2
$a alkylační protinádorové látky $x terapeutické užití $7 D018906
650    _2
$a protinádorové látky imunologicky aktivní $x terapeutické užití $7 D000074322
650    _2
$a bevacizumab $x terapeutické užití $7 D000068258
650    _2
$a nádory mozku $x farmakoterapie $x patologie $7 D001932
650    _2
$a objem krve v mozku $x účinky léků $x fyziologie $7 D000071937
650    _2
$a kombinovaná terapie $7 D003131
650    _2
$a difuzní magnetická rezonance $7 D038524
650    _2
$a přežití bez známek nemoci $7 D018572
650    _2
$a glioblastom $x farmakoterapie $x patologie $7 D005909
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    _2
$a lokální recidiva nádoru $x farmakoterapie $7 D009364
650    12
$a prediktivní hodnota testů $7 D011237
650    _2
$a radioterapie $7 D011878
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a temozolomid $x terapeutické užití $7 D000077204
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
700    1_
$a Korfiatis, Panagiotis $u Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
700    1_
$a Petr, Ondra $u Department of Neurosurgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
700    1_
$a LaChance, Daniel H $u Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
700    1_
$a Parney, Ian $u Department of Neurosurgery, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
700    1_
$a Buckner, Jan C $u Department of Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
700    1_
$a Erickson, Bradley J $u Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America. Electronic address: bje@mayo.edu.
773    0_
$w MED00003004 $t Journal of the neurological sciences $x 1878-5883 $g Roč. 405, č. - (2019), s. 116433
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31476621 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222160258 $b ABA008
999    __
$a ok $b bmc $g 1599725 $s 1116266
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 405 $c - $d 116433 $e 20190823 $i 1878-5883 $m Journal of the neurological sciences $n J Neurol Sci $x MED00003004
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...