-
Je něco špatně v tomto záznamu ?
Behavior of the DPH fluorescence probe in membranes perturbed by drugs
C. Poojari, N. Wilkosz, RB. Lira, R. Dimova, P. Jurkiewicz, R. Petka, M. Kepczynski, T. Róg,
Jazyk angličtina Země Irsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antifungální látky chemie MeSH
- difenylhexatrien chemie MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční polarizace MeSH
- fosfatidylcholiny chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- itrakonazol chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- povrchové vlastnosti MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.
Department of Physics Tampere University of Technology PO Box 692 FI 33101 Tampere Finland
Department of Physics University of Helsinki PO Box 64 FI 00014 Helsinki Finland
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Kraków Poland
Max Planck Institute of Colloids and Interfaces Science Park Golm 14424 Potsdam Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025677
- 003
- CZ-PrNML
- 005
- 20201222160329.0
- 007
- ta
- 008
- 201125s2019 ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.chemphyslip.2019.104784 $2 doi
- 035 __
- $a (PubMed)31199906
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a Poojari, Chetan $u Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland.
- 245 10
- $a Behavior of the DPH fluorescence probe in membranes perturbed by drugs / $c C. Poojari, N. Wilkosz, RB. Lira, R. Dimova, P. Jurkiewicz, R. Petka, M. Kepczynski, T. Róg,
- 520 9_
- $a 1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.
- 650 _2
- $a antifungální látky $x chemie $7 D000935
- 650 _2
- $a difenylhexatrien $x chemie $7 D004161
- 650 _2
- $a fluorescenční polarizace $7 D005454
- 650 _2
- $a fluorescenční barviva $x chemie $7 D005456
- 650 _2
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a itrakonazol $x chemie $7 D017964
- 650 _2
- $a lipidové dvojvrstvy $x chemie $7 D008051
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a fosfatidylcholiny $x chemie $7 D010713
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wilkosz, Natalia $u Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
- 700 1_
- $a Lira, Rafael B $u Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
- 700 1_
- $a Dimova, Rumiana $u Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
- 700 1_
- $a Jurkiewicz, Piotr $u J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
- 700 1_
- $a Petka, Rafał $u Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
- 700 1_
- $a Kepczynski, Mariusz $u Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland. Electronic address: kepczyns@chemia.uj.edu.pl.
- 700 1_
- $a Róg, Tomasz $u Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland. Electronic address: tomasz.rog@gmail.com.
- 773 0_
- $w MED00002119 $t Chemistry and physics of lipids $x 1873-2941 $g Roč. 223, č. - (2019), s. 104784
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31199906 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222160325 $b ABA008
- 999 __
- $a ok $b bmc $g 1599822 $s 1116363
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 223 $c - $d 104784 $e 20190612 $i 1873-2941 $m Chemistry and physics of lipids $n Chem Phys Lipids $x MED00002119
- LZP __
- $a Pubmed-20201125