-
Je něco špatně v tomto záznamu ?
Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs
T. Kayano, Y. Sasaki, N. Kitamura, N. Harayama, T. Moriya, G. Dayanithi, A. Verkhratsky, I. Shibuya,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- kationtové kanály TRPV antagonisté a inhibitory metabolismus MeSH
- krysa rodu rattus MeSH
- melanotropní buňky metabolismus MeSH
- metoda terčíkového zámku MeSH
- potkani Wistar MeSH
- rutheniová červeň farmakologie MeSH
- sodík metabolismus MeSH
- vápník metabolismus MeSH
- vápníkové kanály - typ L metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at -80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.
Achucarro Centre for Neuroscience IKERBASQUE Basque Foundation for Science 48011 Bilbao Spain
Ecole Pratique des Hautes Etudes Sorbonne Paris France
Faculty of Biology Medicine and Health University of Manchester M13 9PT Manchester UK
The United Graduate School of Veterinary Science Yamaguchi University Yamaguchi Japan
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025865
- 003
- CZ-PrNML
- 005
- 20201222160425.0
- 007
- ta
- 008
- 201125s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ceca.2019.02.001 $2 doi
- 035 __
- $a (PubMed)30772686
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Kayano, Tomohiko $u Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan; The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
- 245 10
- $a Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs / $c T. Kayano, Y. Sasaki, N. Kitamura, N. Harayama, T. Moriya, G. Dayanithi, A. Verkhratsky, I. Shibuya,
- 520 9_
- $a Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at -80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vápník $x metabolismus $7 D002118
- 650 _2
- $a vápníkové kanály - typ L $x metabolismus $7 D020746
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a melanotropní buňky $x metabolismus $7 D052717
- 650 _2
- $a metoda terčíkového zámku $7 D018408
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a rutheniová červeň $x farmakologie $7 D012430
- 650 _2
- $a sodík $x metabolismus $7 D012964
- 650 _2
- $a kationtové kanály TRPV $x antagonisté a inhibitory $x metabolismus $7 D050916
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sasaki, Yuto $u Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan.
- 700 1_
- $a Kitamura, Naoki $u Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan; The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
- 700 1_
- $a Harayama, Nobuya $u Intensive Care Medicine, University Hospital, University of Occupational and Environmental Health, Kitakyushu, Japan.
- 700 1_
- $a Moriya, Taiki $u Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan; The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
- 700 1_
- $a Dayanithi, Govindan $u Institut des Sciences Biologiques-Neurosciences, cognition, Centre National de la Recherche Scientifique, 3 rue Michel-Ange, Paris, France; MMDN, Institut National de la Santé et de la Recherche Médicale U1198, Université Montpellier, Montpellier, France; Ecole Pratique des Hautes Etudes-Sorbonne, Paris, France; Department of Pharmacology and Toxicology, Faculty ofMedicine, Charles University at Plzen, Plzen, Czech Republic. Electronic address: gdaya@univ-montp2.fr.
- 700 1_
- $a Verkhratsky, Alexei $u Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- 700 1_
- $a Shibuya, Izumi $u Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan; The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan. Electronic address: ishibuya@muses.tottori-u.ac.jp.
- 773 0_
- $w MED00001072 $t Cell calcium $x 1532-1991 $g Roč. 79, č. - (2019), s. 11-19
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30772686 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222160421 $b ABA008
- 999 __
- $a ok $b bmc $g 1600010 $s 1116551
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 79 $c - $d 11-19 $e 20190206 $i 1532-1991 $m Cell calcium $n Cell Calcium $x MED00001072
- LZP __
- $a Pubmed-20201125