-
Je něco špatně v tomto záznamu ?
Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster
L. Kozák, Z. Szilágyi, L. Tóth, I. Pócsi, I. Molnár,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
R01 GM114418
NIGMS NIH HHS - United States
NIGMS 5R01GM114418
U.S. National Institutes of Health
EFOP-3.6.1-16-2016-00022
European Union and the European Social Fund
Hatch project 1020652
Institut USDA National Institute of Food and Agriculture
- MeSH
- biosyntetické dráhy genetika MeSH
- Claviceps enzymologie genetika MeSH
- diterpeny metabolismus MeSH
- geny hub * MeSH
- indoly metabolismus MeSH
- multigenová rodina * MeSH
- oxygenasy se smíšenou funkcí genetika MeSH
- prenyltransferáza genetika MeSH
- Publikační typ
- časopisecké články MeSH
Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20027165
- 003
- CZ-PrNML
- 005
- 20210105141537.0
- 007
- ta
- 008
- 210105s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-020-00777-6 $2 doi
- 035 __
- $a (PubMed)32077051
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kozák, László $u Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary. Teva Pharmaceutical Works Ltd., Debrecen, Hungary.
- 245 10
- $a Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster / $c L. Kozák, Z. Szilágyi, L. Tóth, I. Pócsi, I. Molnár,
- 520 9_
- $a Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.
- 650 _2
- $a biosyntetické dráhy $x genetika $7 D053898
- 650 _2
- $a Claviceps $x enzymologie $x genetika $7 D002967
- 650 _2
- $a prenyltransferáza $x genetika $7 D004122
- 650 _2
- $a diterpeny $x metabolismus $7 D004224
- 650 12
- $a geny hub $7 D005800
- 650 _2
- $a indoly $x metabolismus $7 D007211
- 650 _2
- $a oxygenasy se smíšenou funkcí $x genetika $7 D006899
- 650 12
- $a multigenová rodina $7 D005810
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Szilágyi, Zoltán $u Teva Pharmaceutical Works Ltd., Debrecen, Hungary.
- 700 1_
- $a Tóth, László $u Teva Pharmaceutical Works Ltd., Debrecen, Hungary.
- 700 1_
- $a Pócsi, István $u Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary. pocsi.istvan@science.unideb.hu.
- 700 1_
- $a Molnár, István $u Southwest Center for Natural Products Research, School of Natural Resources and the Environment, University of Arizona, Tucson, USA.
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 65, č. 3 (2020), s. 605-613
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32077051 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210105141533 $b ABA008
- 999 __
- $a ok $b bmc $g 1604145 $s 1117857
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 65 $c 3 $d 605-613 $e 20200219 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- GRA __
- $a R01 GM114418 $p NIGMS NIH HHS $2 United States
- GRA __
- $a NIGMS 5R01GM114418 $p U.S. National Institutes of Health
- GRA __
- $a EFOP-3.6.1-16-2016-00022 $p European Union and the European Social Fund
- GRA __
- $a Hatch project 1020652 $p Institut USDA National Institute of Food and Agriculture
- LZP __
- $a Pubmed-20210105