Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4

L. Plecitá-Hlavatá, M. Jabůrek, B. Holendová, J. Tauber, V. Pavluch, Z. Berková, M. Cahová, K. Schröder, RP. Brandes, D. Siemen, P. Ježek,

. 2020 ; 69 (7) : 1341-1354. [pub] 20200403

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028045

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of β-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4βKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause β-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.

000      
00000naa a2200000 a 4500
001      
bmc20028045
003      
CZ-PrNML
005      
20210114152851.0
007      
ta
008      
210105s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.2337/db19-1130 $2 doi
035    __
$a (PubMed)32245800
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Plecitá-Hlavatá, Lydie $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
245    10
$a Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4 / $c L. Plecitá-Hlavatá, M. Jabůrek, B. Holendová, J. Tauber, V. Pavluch, Z. Berková, M. Cahová, K. Schröder, RP. Brandes, D. Siemen, P. Ježek,
520    9_
$a NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of β-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4βKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause β-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.
650    _2
$a zvířata $7 D000818
650    _2
$a vápník $x metabolismus $7 D002118
650    _2
$a kultivované buňky $7 D002478
650    _2
$a glukosa $x farmakologie $7 D005947
650    _2
$a peroxid vodíku $x metabolismus $7 D006861
650    _2
$a inzulinová rezistence $7 D007333
650    12
$a sekrece inzulinu $7 D000078790
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a NADPH-oxidasa 4 $x fyziologie $7 D000074663
650    _2
$a draslíkové kanály $x fyziologie $7 D015221
650    _2
$a signální transdukce $x fyziologie $7 D015398
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jabůrek, Martin $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Holendová, Blanka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Tauber, Jan $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Pavluch, Vojtěch $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Berková, Zuzana $u Institute of Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Cahová, Monika $u Institute of Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Schröder, Katrin $u Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt, Germany.
700    1_
$a Brandes, Ralf P $u Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt, Germany.
700    1_
$a Siemen, Detlef $u Klinik für Neurologie, Universität Magdeburg, Magdeburg, Germany.
700    1_
$a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic jezek@biomed.cas.cz.
773    0_
$w MED00001379 $t Diabetes $x 1939-327X $g Roč. 69, č. 7 (2020), s. 1341-1354
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32245800 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114152849 $b ABA008
999    __
$a ok $b bmc $g 1608380 $s 1119225
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 69 $c 7 $d 1341-1354 $e 20200403 $i 1939-327X $m Diabetes $n Diabetes $x MED00001379
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...