-
Something wrong with this record ?
Vulnerability of classifiers to evolutionary generated adversarial examples
P. Vidnerová, R. Neruda,
Language English Country United States
Document type Journal Article
- MeSH
- Algorithms MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Supervised Machine Learning * trends MeSH
- Pattern Recognition, Automated methods trends MeSH
- Machine Learning trends MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
This paper deals with the vulnerability of machine learning models to adversarial examples and its implication for robustness and generalization properties. We propose an evolutionary algorithm that can generate adversarial examples for any machine learning model in the black-box attack scenario. This way, we can find adversarial examples without access to model's parameters, only by querying the model at hand. We have tested a range of machine learning models including deep and shallow neural networks. Our experiments have shown that the vulnerability to adversarial examples is not only the problem of deep networks, but it spreads through various machine learning architectures. Rather, it depends on the type of computational units. Local units, such as Gaussian kernels, are less vulnerable to adversarial examples.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028066
- 003
- CZ-PrNML
- 005
- 20210114152915.0
- 007
- ta
- 008
- 210105s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2020.04.015 $2 doi
- 035 __
- $a (PubMed)32361547
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vidnerová, Petra $u The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 271/2, 182 07 Prague 8, Czechia. Electronic address: petra@cs.cas.cz.
- 245 10
- $a Vulnerability of classifiers to evolutionary generated adversarial examples / $c P. Vidnerová, R. Neruda,
- 520 9_
- $a This paper deals with the vulnerability of machine learning models to adversarial examples and its implication for robustness and generalization properties. We propose an evolutionary algorithm that can generate adversarial examples for any machine learning model in the black-box attack scenario. This way, we can find adversarial examples without access to model's parameters, only by querying the model at hand. We have tested a range of machine learning models including deep and shallow neural networks. Our experiments have shown that the vulnerability to adversarial examples is not only the problem of deep networks, but it spreads through various machine learning architectures. Rather, it depends on the type of computational units. Local units, such as Gaussian kernels, are less vulnerable to adversarial examples.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $x trendy $7 D000069550
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a rozpoznávání automatizované $x metody $x trendy $7 D010363
- 650 12
- $a řízené strojové učení $x trendy $7 D000069553
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Neruda, Roman $u The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 271/2, 182 07 Prague 8, Czechia. Electronic address: roman@cs.cas.cz.
- 773 0_
- $w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 127, č. - (2020), s. 168-181
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32361547 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114152913 $b ABA008
- 999 __
- $a ok $b bmc $g 1608401 $s 1119246
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 127 $c - $d 168-181 $e 20200420 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20210105