• Je něco špatně v tomto záznamu ?

SIRT3 and GCN5L regulation of NADP+- and NADPH-driven reactions of mitochondrial isocitrate dehydrogenase IDH2

K. Smolková, J. Špačková, K. Gotvaldová, A. Dvořák, A. Křenková, M. Hubálek, B. Holendová, L. Vítek, P. Ježek,

. 2020 ; 10 (1) : 8677. [pub] 20200526

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028154

Wild type mitochondrial isocitrate dehydrogenase (IDH2) was previously reported to produce oncometabolite 2-hydroxyglutarate (2HG). Besides, mitochondrial deacetylase SIRT3 has been shown to regulate the oxidative function of IDH2. However, regulation of 2HG formation by SIRT3-mediated deacetylation was not investigated yet. We aimed to study mitochondrial IDH2 function in response to acetylation and deacetylation, and focus specifically on 2HG production by IDH2. We used acetylation surrogate mutant of IDH2 K413Q and assayed enzyme kinetics of oxidative decarboxylation of isocitrate, 2HG production by the enzyme, and 2HG production in cells. The purified IDH2 K413Q exhibited lower oxidative reaction rates than IDH2 WT. 2HG production by IDH2 K413Q was largely diminished at the enzymatic and cellular level, and knockdown of SIRT3 also inhibited 2HG production by IDH2. Contrary, the expression of putative mitochondrial acetylase GCN5L likely does not target IDH2. Using mass spectroscopy, we further identified lysine residues within IDH2, which are the substrates of SIRT3. In summary, we demonstrate that 2HG levels arise from non-mutant IDH2 reductive function and decrease with increasing acetylation level. The newly identified lysine residues might apply in regulation of IDH2 function in response to metabolic perturbations occurring in cancer cells, such as glucose-free conditions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028154
003      
CZ-PrNML
005      
20210114153111.0
007      
ta
008      
210105s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-020-65351-z $2 doi
035    __
$a (PubMed)32457458
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Smolková, Katarína $u Laboratory of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Vídeňská 1083, 14220, Prague, Czech Republic. katarina.smolkova@fgu.cas.cz.
245    10
$a SIRT3 and GCN5L regulation of NADP+- and NADPH-driven reactions of mitochondrial isocitrate dehydrogenase IDH2 / $c K. Smolková, J. Špačková, K. Gotvaldová, A. Dvořák, A. Křenková, M. Hubálek, B. Holendová, L. Vítek, P. Ježek,
520    9_
$a Wild type mitochondrial isocitrate dehydrogenase (IDH2) was previously reported to produce oncometabolite 2-hydroxyglutarate (2HG). Besides, mitochondrial deacetylase SIRT3 has been shown to regulate the oxidative function of IDH2. However, regulation of 2HG formation by SIRT3-mediated deacetylation was not investigated yet. We aimed to study mitochondrial IDH2 function in response to acetylation and deacetylation, and focus specifically on 2HG production by IDH2. We used acetylation surrogate mutant of IDH2 K413Q and assayed enzyme kinetics of oxidative decarboxylation of isocitrate, 2HG production by the enzyme, and 2HG production in cells. The purified IDH2 K413Q exhibited lower oxidative reaction rates than IDH2 WT. 2HG production by IDH2 K413Q was largely diminished at the enzymatic and cellular level, and knockdown of SIRT3 also inhibited 2HG production by IDH2. Contrary, the expression of putative mitochondrial acetylase GCN5L likely does not target IDH2. Using mass spectroscopy, we further identified lysine residues within IDH2, which are the substrates of SIRT3. In summary, we demonstrate that 2HG levels arise from non-mutant IDH2 reductive function and decrease with increasing acetylation level. The newly identified lysine residues might apply in regulation of IDH2 function in response to metabolic perturbations occurring in cancer cells, such as glucose-free conditions.
650    _2
$a acetylace $7 D000107
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a umlčování genů $7 D020868
650    _2
$a glutaráty $x metabolismus $7 D005977
650    _2
$a lidé $7 D006801
650    _2
$a isocitrátdehydrogenasa $x genetika $x metabolismus $7 D007521
650    _2
$a isocitráty $x chemie $7 D007523
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a NADP $x metabolismus $7 D009249
650    _2
$a proteiny nervové tkáně $x metabolismus $7 D009419
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a sirtuin 3 $x metabolismus $7 D056566
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Špačková, Jitka $u Laboratory of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
700    1_
$a Gotvaldová, Klára $u Laboratory of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
700    1_
$a Dvořák, Aleš $u Laboratory of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Vídeňská 1083, 14220, Prague, Czech Republic. Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
700    1_
$a Křenková, Alena $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB CAS), Prague, Czech Republic.
700    1_
$a Hubálek, Martin $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB CAS), Prague, Czech Republic.
700    1_
$a Holendová, Blanka $u Laboratory of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
700    1_
$a Vítek, Libor $u Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
700    1_
$a Ježek, Petr $u Laboratory of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 8677
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32457458 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114153109 $b ABA008
999    __
$a ok $b bmc $g 1608489 $s 1119334
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 1 $d 8677 $e 20200526 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...