Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice

L. Wang, Q. Tang, J. Xu, H. Li, T. Yang, L. Li, O. Machon, T. Hu, Y. Chen,

. 2020 ; 295 (16) : 5449-5460. [pub] 20200313

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 DE026482 NIDCR NIH HHS - United States

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre -mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre ;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028249
003      
CZ-PrNML
005      
20210114153330.0
007      
ta
008      
210105s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.RA120.012684 $2 doi
035    __
$a (PubMed)32169905
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Wang, Linyan $u State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China. Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118.
245    14
$a The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice / $c L. Wang, Q. Tang, J. Xu, H. Li, T. Yang, L. Li, O. Machon, T. Hu, Y. Chen,
520    9_
$a Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre -mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre ;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.
650    _2
$a zvířata $7 D000818
650    _2
$a vazebná místa $7 D001665
650    _2
$a vývojová regulace genové exprese $7 D018507
650    _2
$a homeodoménové proteiny $x chemie $x genetika $x metabolismus $7 D018398
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a crista neuralis $x cytologie $7 D009432
650    _2
$a nervové kmenové buňky $x cytologie $x metabolismus $7 D058953
650    12
$a osteogeneze $7 D010012
650    _2
$a patro $x embryologie $x metabolismus $7 D010159
650    _2
$a vazba proteinů $7 D011485
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Tang, Qinghuang $u Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118.
700    1_
$a Xu, Jue $u Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118. West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
700    1_
$a Li, Hua $u Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118.
700    1_
$a Yang, Tianfang $u Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118.
700    1_
$a Li, Liwen $u Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118.
700    1_
$a Machon, Ondrej $u Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14200 Praha, Czech Republic.
700    1_
$a Hu, Tao $u State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
700    1_
$a Chen, YiPing $u Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118 ychen@tulane.edu.
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 295, č. 16 (2020), s. 5449-5460
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32169905 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114153327 $b ABA008
999    __
$a ok $b bmc $g 1608584 $s 1119429
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 295 $c 16 $d 5449-5460 $e 20200313 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
GRA    __
$a R01 DE026482 $p NIDCR NIH HHS $2 United States
LZP    __
$a Pubmed-20210105

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...