-
Je něco špatně v tomto záznamu ?
A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp
S. Yang, K. Zeng, L. Luo, W. Qian, Z. Wang, J. Doležel, M. Zhang, X. Gao, Z. Deng,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- buněčný cyklus fyziologie MeSH
- časové faktory MeSH
- chromozomy rostlin * metabolismus MeSH
- genom rostlinný genetika MeSH
- genomika metody MeSH
- hydroxymočovina MeSH
- metafáze MeSH
- mitotický index MeSH
- nitrobenzeny MeSH
- organothiofosforové sloučeniny MeSH
- průtoková cytometrie metody MeSH
- pufry MeSH
- Saccharum cytologie genetika MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028372
- 003
- CZ-PrNML
- 005
- 20210114153651.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-020-62086-9 $2 doi
- 035 __
- $a (PubMed)32193460
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Yang, Shan $u National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- 245 12
- $a A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp / $c S. Yang, K. Zeng, L. Luo, W. Qian, Z. Wang, J. Doležel, M. Zhang, X. Gao, Z. Deng,
- 520 9_
- $a Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
- 650 _2
- $a pufry $7 D002021
- 650 _2
- $a buněčný cyklus $x fyziologie $7 D002453
- 650 12
- $a chromozomy rostlin $x metabolismus $7 D032461
- 650 _2
- $a průtoková cytometrie $x metody $7 D005434
- 650 _2
- $a genom rostlinný $x genetika $7 D018745
- 650 _2
- $a genomika $x metody $7 D023281
- 650 _2
- $a hydroxymočovina $7 D006918
- 650 _2
- $a metafáze $7 D008677
- 650 _2
- $a mitotický index $7 D008940
- 650 _2
- $a nitrobenzeny $7 D009578
- 650 _2
- $a organothiofosforové sloučeniny $7 D009946
- 650 _2
- $a Saccharum $x cytologie $x genetika $7 D031786
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zeng, Kai $u National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- 700 1_
- $a Luo, Ling $u National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- 700 1_
- $a Qian, Wang $u National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- 700 1_
- $a Wang, Zhiqiang $u State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
- 700 1_
- $a Doležel, Jaroslav $u Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Olomouc, CZ-78371, Czech Republic.
- 700 1_
- $a Zhang, Muqing $u State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
- 700 1_
- $a Gao, Xiangxiong $u College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- 700 1_
- $a Deng, Zuhu $u National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. dengzuhu@163.com. State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China. dengzuhu@163.com.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 5016
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32193460 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114153648 $b ABA008
- 999 __
- $a ok $b bmc $g 1608707 $s 1119552
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 10 $c 1 $d 5016 $e 20200319 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105