• Je něco špatně v tomto záznamu ?

Selective Priming of Tumor Blood Vessels by Radiation Therapy Enhances Nanodrug Delivery

S. Kunjachan, S. Kotb, R. Pola, M. Pechar, R. Kumar, B. Singh, F. Gremse, R. Taleeli, F. Trichard, V. Motto-Ros, L. Sancey, A. Detappe, S. Yasmin-Karim, A. Protti, I. Shanmugam, T. Ireland, T. Etrych, S. Sridhar, O. Tillement, M. Makrigiorgos,...

. 2019 ; 9 (1) : 15844. [pub] 20191101

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028771

Grantová podpora
NV16-28594A MZ0 CEP - Centrální evidence projektů

Effective drug delivery is restricted by pathophysiological barriers in solid tumors. In human pancreatic adenocarcinoma, poorly-permeable blood vessels limit the intratumoral permeation and penetration of chemo or nanotherapeutic drugs. New and clinically viable strategies are urgently sought to breach the neoplastic barriers that prevent effective drug delivery. Here, we present an original idea to boost drug delivery by selectively knocking down the tumor vascular barrier in a human pancreatic cancer model. Clinical radiation activates the tumor endothelial-targeted gold nanoparticles to induce a physical vascular damage due to the high photoelectric interactions. Active modulation of these tumor neovessels lead to distinct changes in tumor vascular permeability. Noninvasive MRI and fluorescence studies, using a short-circulating nanocarrier with MR-sensitive gadolinium and a long-circulating nanocarrier with fluorescence-sensitive nearinfrared dye, demonstrate more than two-fold increase in nanodrug delivery, post tumor vascular modulation. Functional changes in altered tumor blood vessels and its downstream parameters, particularly, changes in Ktrans (permeability), Kep (flux rate), and Ve (extracellular interstitial volume), reflect changes that relate to augmented drug delivery. The proposed dual-targeted therapy effectively invades the tumor vascular barrier and improve nanodrug delivery in a human pancreatic tumor model and it may also be applied to other nonresectable, intransigent tumors that barely respond to standard drug therapies.

Department of Radiation Oncology Brigham and Women's Hospital Dana Farber Cancer Institute and Harvard Medical School Boston MA United States

Department of Radiation Oncology Brigham and Women's Hospital Dana Farber Cancer Institute and Harvard Medical School Boston MA United States Institut Lumière Matière UMR 5306 Université Claude Bernard Lyon 1 CNRS Villeurbanne France

Department of Radiation Oncology Brigham and Women's Hospital Dana Farber Cancer Institute and Harvard Medical School Boston MA United States Nanomedicine Science and Technology Center and Department of Physics Northeastern University Boston MA United States

Division of Medical Physics and Engineering University of Texas Southwestern Medical Center Texas United States

Experimental Molecular Imaging University Hospital and Helmholtz Institute for Biomedical Engineering RWTH Aachen University Aachen Germany

Institut Lumière Matière UMR 5306 Université Claude Bernard Lyon 1 CNRS Villeurbanne France

Institute for Advanced Biosciences UGA INSERM U1209 CNRS UMR 5309 Joint Research Center Grenoble France

Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Heyrovsky Square 2 16206 Prague 6 Czech Republic

LA ICP MS and ICP ES Laboratories Department of Earth and Environmental Sciences Boston University Boston MA United States

Lurie Family Imaging Center Department of Radiology Dana Farber Cancer Institute and Harvard Medical School Boston MA United States

Nanomedicine Science and Technology Center and Department of Physics Northeastern University Boston MA United States

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028771
003      
CZ-PrNML
005      
20210114155132.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-50538-w $2 doi
035    __
$a (PubMed)31676822
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kunjachan, Sijumon $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States. sijumon@gmail.com.
245    10
$a Selective Priming of Tumor Blood Vessels by Radiation Therapy Enhances Nanodrug Delivery / $c S. Kunjachan, S. Kotb, R. Pola, M. Pechar, R. Kumar, B. Singh, F. Gremse, R. Taleeli, F. Trichard, V. Motto-Ros, L. Sancey, A. Detappe, S. Yasmin-Karim, A. Protti, I. Shanmugam, T. Ireland, T. Etrych, S. Sridhar, O. Tillement, M. Makrigiorgos, RI. Berbeco,
520    9_
$a Effective drug delivery is restricted by pathophysiological barriers in solid tumors. In human pancreatic adenocarcinoma, poorly-permeable blood vessels limit the intratumoral permeation and penetration of chemo or nanotherapeutic drugs. New and clinically viable strategies are urgently sought to breach the neoplastic barriers that prevent effective drug delivery. Here, we present an original idea to boost drug delivery by selectively knocking down the tumor vascular barrier in a human pancreatic cancer model. Clinical radiation activates the tumor endothelial-targeted gold nanoparticles to induce a physical vascular damage due to the high photoelectric interactions. Active modulation of these tumor neovessels lead to distinct changes in tumor vascular permeability. Noninvasive MRI and fluorescence studies, using a short-circulating nanocarrier with MR-sensitive gadolinium and a long-circulating nanocarrier with fluorescence-sensitive nearinfrared dye, demonstrate more than two-fold increase in nanodrug delivery, post tumor vascular modulation. Functional changes in altered tumor blood vessels and its downstream parameters, particularly, changes in Ktrans (permeability), Kep (flux rate), and Ve (extracellular interstitial volume), reflect changes that relate to augmented drug delivery. The proposed dual-targeted therapy effectively invades the tumor vascular barrier and improve nanodrug delivery in a human pancreatic tumor model and it may also be applied to other nonresectable, intransigent tumors that barely respond to standard drug therapies.
650    _2
$a zvířata $7 D000818
650    _2
$a nádorové buněčné linie $7 D045744
650    12
$a systémy cílené aplikace léků $7 D016503
650    12
$a zlato $x chemie $x farmakokinetika $x farmakologie $7 D006046
650    _2
$a endoteliální buňky pupečníkové žíly (lidské) $x metabolismus $7 D061307
650    _2
$a lidé $7 D006801
650    12
$a magnetická rezonanční angiografie $7 D018810
650    12
$a kovové nanočástice $x chemie $x terapeutické užití $7 D053768
650    _2
$a myši $7 D051379
650    12
$a experimentální nádory $x krevní zásobení $x diagnostické zobrazování $x farmakoterapie $x metabolismus $7 D009374
650    12
$a patologická angiogeneze $x diagnostické zobrazování $x farmakoterapie $x metabolismus $7 D009389
650    12
$a optické zobrazování $7 D061848
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kotb, Shady $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States. Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.
700    1_
$a Pola, Robert $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic.
700    1_
$a Pechar, Michal $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic.
700    1_
$a Kumar, Rajiv $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States. Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States.
700    1_
$a Singh, Bijay $u Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States.
700    1_
$a Gremse, Felix $u Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
700    1_
$a Taleeli, Reza $u Division of Medical Physics & Engineering, University of Texas Southwestern Medical Center, Texas, United States.
700    1_
$a Trichard, Florian $u Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.
700    1_
$a Motto-Ros, Vincent $u Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.
700    1_
$a Sancey, Lucie $u Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS UMR 5309 Joint Research Center, Grenoble, France.
700    1_
$a Detappe, Alexandre $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
700    1_
$a Yasmin-Karim, Sayeda $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
700    1_
$a Protti, Andrea $u Lurie Family Imaging Center, Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
700    1_
$a Shanmugam, Ilanchezhian $u Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States.
700    1_
$a Ireland, Thomas $u LA-ICP-MS and ICP-ES Laboratories, Department of Earth and Environmental Sciences, Boston University, Boston, MA, United States.
700    1_
$a Etrych, Tomas $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic.
700    1_
$a Sridhar, Srinivas $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States. Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States.
700    1_
$a Tillement, Olivier $u Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.
700    1_
$a Makrigiorgos, Mike $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
700    1_
$a Berbeco, Ross I $u Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 15844
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31676822 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114155131 $b ABA008
999    __
$a ok $b bmc $g 1609106 $s 1119951
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 15844 $e 20191101 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a NV16-28594A $p MZ0
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...