• Je něco špatně v tomto záznamu ?

PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks

E. Klimentova, J. Polacek, P. Simecek, P. Alexiou,

. 2020 ; 11 (-) : 568546. [pub] 20201027

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21001889

G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21001889
003      
CZ-PrNML
005      
20210126092728.0
007      
ta
008      
210105s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fgene.2020.568546 $2 doi
035    __
$a (PubMed)33193663
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Klimentova, Eva $u Faculty of Informatics, Masaryk University, Brno, Czechia.
245    10
$a PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks. / $c E. Klimentova, J. Polacek, P. Simecek, P. Alexiou,
520    9_
$a G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Polacek, Jakub $u Faculty of Informatics, Masaryk University, Brno, Czechia.
700    1_
$a Simecek, Petr $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
700    1_
$a Alexiou, Panagiotis $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
773    0_
$w MED00184539 $t Frontiers in genetics $x 1664-8021 $g Roč. 11, č. - (2020), s. 568546
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33193663 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210126092724 $b ABA008
999    __
$a ind $b bmc $g 1614055 $s 1122173
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 11 $c - $d 568546 $e 20201027 $i 1664-8021 $m Frontiers in genetics $n Front Genet $x MED00184539
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...