-
Je něco špatně v tomto záznamu ?
PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks
E. Klimentova, J. Polacek, P. Simecek, P. Alexiou,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2010
Free Medical Journals
od 2010
PubMed Central
od 2010
Europe PubMed Central
od 2010
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
- Publikační typ
- časopisecké články MeSH
G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21001889
- 003
- CZ-PrNML
- 005
- 20210126092728.0
- 007
- ta
- 008
- 210105s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3389/fgene.2020.568546 $2 doi
- 035 __
- $a (PubMed)33193663
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Klimentova, Eva $u Faculty of Informatics, Masaryk University, Brno, Czechia.
- 245 10
- $a PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks. / $c E. Klimentova, J. Polacek, P. Simecek, P. Alexiou,
- 520 9_
- $a G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Polacek, Jakub $u Faculty of Informatics, Masaryk University, Brno, Czechia.
- 700 1_
- $a Simecek, Petr $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
- 700 1_
- $a Alexiou, Panagiotis $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
- 773 0_
- $w MED00184539 $t Frontiers in genetics $x 1664-8021 $g Roč. 11, č. - (2020), s. 568546
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33193663 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210126092724 $b ABA008
- 999 __
- $a ind $b bmc $g 1614055 $s 1122173
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 11 $c - $d 568546 $e 20201027 $i 1664-8021 $m Frontiers in genetics $n Front Genet $x MED00184539
- LZP __
- $a Pubmed-20210105