Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data

K. John, NM. Kebonye, PC. Agyeman, SK. Ahado

. 2021 ; 193 (4) : 197. [pub] 20210317

Language English Country Netherlands

Document type Journal Article

Grant support
SV20-5-21130 Fakultu Agrobiologie, Potravinových a Prírodních Zdrojů, Česká Zemědělská Univerzita v Praze

E-resources Online Full text

NLK ProQuest Central from 1997-02-01 to 1 year ago
Medline Complete (EBSCOhost) from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-02-01 to 1 year ago
Public Health Database (ProQuest) from 1997-02-01 to 1 year ago

Soil organic carbon (SOC) tends to form complexes with most metallic ions within the soil system. Relatively few studies compare SOC predictions via portable X-ray fluorescence (pXRF) measured data coupled with the Cubist algorithm. The current study applied three different Cubist models to estimate SOC while using several pXRF measured data. Soil samples (n = 158) were collected from the Litavka floodplain area during two separate sampling campaigns in 2018. Thirteen pXRF data or predictors (K, Ca, Rb, Mn, Fe, As, Ba, Th, Pb, Sr, Ti, Zr, and Zn) were selected to develop the proposed models. Validation and comparison of the models applied the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results revealed that Cubist 1, utilizing all the predictors yielded the best model outcome (MAE = 0.51%, RMSE = 0.68%, R2 = 0.78) followed by Cubist 2, using predictors with relatively high importance (VarImp. predictors) (MAE = 0.64%, RMSE = 0.82%, R2 = 0.68), and lastly Cubist 3 with predictors showing a significantly positive correlation (MAE = 0.69%, RMSE = 0.90%, R2 = 0.62). The Cubist 1 model was considered more promising for explaining the complex relationships between SOC and the pXRF data used. Moreover, for the estimation of SOC in temperate floodplain soils all the Cubist models gave an acceptable model. However, future research should focus on using other auxiliary data [e.g., soil properties, data from other sensors (e.g., FieldSpec)] as well as extend the study area to cover more soil types hence improve model robustness as well as parsimoniousness.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21011425
003      
CZ-PrNML
005      
20210507102050.0
007      
ta
008      
210420s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10661-021-08946-x $2 doi
035    __
$a (PubMed)33728486
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a John, Kingsley $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic. johnk@af.czu.cz
245    10
$a Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data / $c K. John, NM. Kebonye, PC. Agyeman, SK. Ahado
520    9_
$a Soil organic carbon (SOC) tends to form complexes with most metallic ions within the soil system. Relatively few studies compare SOC predictions via portable X-ray fluorescence (pXRF) measured data coupled with the Cubist algorithm. The current study applied three different Cubist models to estimate SOC while using several pXRF measured data. Soil samples (n = 158) were collected from the Litavka floodplain area during two separate sampling campaigns in 2018. Thirteen pXRF data or predictors (K, Ca, Rb, Mn, Fe, As, Ba, Th, Pb, Sr, Ti, Zr, and Zn) were selected to develop the proposed models. Validation and comparison of the models applied the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results revealed that Cubist 1, utilizing all the predictors yielded the best model outcome (MAE = 0.51%, RMSE = 0.68%, R2 = 0.78) followed by Cubist 2, using predictors with relatively high importance (VarImp. predictors) (MAE = 0.64%, RMSE = 0.82%, R2 = 0.68), and lastly Cubist 3 with predictors showing a significantly positive correlation (MAE = 0.69%, RMSE = 0.90%, R2 = 0.62). The Cubist 1 model was considered more promising for explaining the complex relationships between SOC and the pXRF data used. Moreover, for the estimation of SOC in temperate floodplain soils all the Cubist models gave an acceptable model. However, future research should focus on using other auxiliary data [e.g., soil properties, data from other sensors (e.g., FieldSpec)] as well as extend the study area to cover more soil types hence improve model robustness as well as parsimoniousness.
650    _2
$a algoritmy $7 D000465
650    _2
$a uhlík $x analýza $7 D002244
650    _2
$a monitorování životního prostředí $7 D004784
650    12
$a půda $7 D012987
650    12
$a látky znečišťující půdu $x analýza $7 D012989
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kebonye, Ndiye M $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
700    1_
$a Agyeman, Prince C $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
700    1_
$a Ahado, Samuel K $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
773    0_
$w MED00007602 $t Environmental monitoring and assessment $x 1573-2959 $g Roč. 193, č. 4 (2021), s. 197
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33728486 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507102050 $b ABA008
999    __
$a ok $b bmc $g 1649958 $s 1131804
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 193 $c 4 $d 197 $e 20210317 $i 1573-2959 $m Environmental monitoring and assessment $n Environ Monit Assess $x MED00007602
GRA    __
$a SV20-5-21130 $p Fakultu Agrobiologie, Potravinových a Prírodních Zdrojů, Česká Zemědělská Univerzita v Praze
LZP    __
$a Pubmed-20210420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...