• Je něco špatně v tomto záznamu ?

Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge

J. Moško, M. Pohořelý, T. Cajthaml, M. Jeremiáš, AA. Robles-Aguilar, S. Skoblia, Z. Beňo, P. Innemanová, L. Linhartová, K. Michalíková, E. Meers

. 2021 ; 265 (-) : 129082. [pub] 20201123

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21011520

Sewage sludge was excluded from the list of component materials for the production of EU fertilizing products and it was banned as feedstock to produce pyrolysis & gasification materials in European Commission's technical proposals for selected new fertilizing materials under the Regulation 2019/1009 (STRUBIAS report). This exclusion of pyrolysis as a viable way to treat sewage sludge was mainly due to the lack of data on the fate of organic pollutants at pyrolysis conditions. In this work, we are addressing this knowledge gap. We studied slow pyrolysis as a potential process to efficiently treat organic pollutants present in stabilized sewage sludge. Sewage sludge was pyrolyzed in a quartz fixed bed reactor at temperatures of 400-800 °C for 2 h and the sludge and resulting sludge-chars were analyzed for the presence of four groups of organic pollutants, namely (i) polychlorinated biphenyls (PCBs), (ii) polycyclic aromatic hydrocarbons (PAHs), (iii) pharmaceuticals, and (iv) endocrine-disrupting and hormonal compounds. Pyrolysis at ≥ 400 °C effectively removed pharmaceuticals (group iii) to below detection limits, whereas pyrolysis at temperatures higher than 600 °C was required to remove more than 99.8% of the compounds from groups i, ii and iv. Based on these findings, we propose, that high temperature (>600 °C) slow pyrolysis can satisfactory remove organic pollutants from the resulting sludge-char, which could be safely applied as soil improver.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21011520
003      
CZ-PrNML
005      
20210507102340.0
007      
ta
008      
210420s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.chemosphere.2020.129082 $2 doi
035    __
$a (PubMed)33309446
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Moško, Jaroslav $u Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague 6, Czech Republic
245    10
$a Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge / $c J. Moško, M. Pohořelý, T. Cajthaml, M. Jeremiáš, AA. Robles-Aguilar, S. Skoblia, Z. Beňo, P. Innemanová, L. Linhartová, K. Michalíková, E. Meers
520    9_
$a Sewage sludge was excluded from the list of component materials for the production of EU fertilizing products and it was banned as feedstock to produce pyrolysis & gasification materials in European Commission's technical proposals for selected new fertilizing materials under the Regulation 2019/1009 (STRUBIAS report). This exclusion of pyrolysis as a viable way to treat sewage sludge was mainly due to the lack of data on the fate of organic pollutants at pyrolysis conditions. In this work, we are addressing this knowledge gap. We studied slow pyrolysis as a potential process to efficiently treat organic pollutants present in stabilized sewage sludge. Sewage sludge was pyrolyzed in a quartz fixed bed reactor at temperatures of 400-800 °C for 2 h and the sludge and resulting sludge-chars were analyzed for the presence of four groups of organic pollutants, namely (i) polychlorinated biphenyls (PCBs), (ii) polycyclic aromatic hydrocarbons (PAHs), (iii) pharmaceuticals, and (iv) endocrine-disrupting and hormonal compounds. Pyrolysis at ≥ 400 °C effectively removed pharmaceuticals (group iii) to below detection limits, whereas pyrolysis at temperatures higher than 600 °C was required to remove more than 99.8% of the compounds from groups i, ii and iv. Based on these findings, we propose, that high temperature (>600 °C) slow pyrolysis can satisfactory remove organic pollutants from the resulting sludge-char, which could be safely applied as soil improver.
650    12
$a látky znečišťující životní prostředí $7 D004785
650    12
$a polycyklické aromatické uhlovodíky $x analýza $7 D011084
650    _2
$a pyrolýza $7 D000077319
650    _2
$a odpadní vody $7 D012722
650    _2
$a teplota $7 D013696
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pohořelý, Michael $u Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague 6, Czech Republic. Electronic address: Michael.Pohorely@vscht.cz
700    1_
$a Cajthaml, Tomáš $u The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
700    1_
$a Jeremiáš, Michal $u Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic; The Czech Academy of Sciences, Institute of Plasma Physics, Za Slovankou 1782/3, 182 00, Prague 8, Czech Republic
700    1_
$a Robles-Aguilar, Ana A $u Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
700    1_
$a Skoblia, Siarhei $u Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
700    1_
$a Beňo, Zdeněk $u Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
700    1_
$a Innemanová, Petra $u Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
700    1_
$a Linhartová, Lucie $u The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
700    1_
$a Michalíková, Klára $u The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
700    1_
$a Meers, Erik $u Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
773    0_
$w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 265, č. - (2021), s. 129082
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33309446 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507102339 $b ABA008
999    __
$a ok $b bmc $g 1650025 $s 1131899
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 265 $c - $d 129082 $e 20201123 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...