-
Something wrong with this record ?
Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors
SK. Pandey, M. Melichercik, D. Řeha, RH. Ettrich, J. Carey
Language English Country Switzerland
Document type Journal Article
Grant support
13-21053S
Grantová Agentura České Republiky
DBI13-58737
National Science Foundation
DBI16-59726
National Science Foundation
APVV-16-0600
Agentúra na Podporu Výskumu a Vývoja
LM2015055
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2010005
Ministerstvo Školství, Mládeže a Tělovýchovy
2018
MoA between the Institute of Microbiology, Czech Academy of Sciences, and the College of Biomedical Sciences, Larkin University.
NLK
Directory of Open Access Journals
from 1997
Free Medical Journals
from 1997
PubMed Central
from 2001
Europe PubMed Central
from 2001
ProQuest Central
from 1997-01-01
Open Access Digital Library
from 1997-01-01
Medline Complete (EBSCOhost)
from 2009-03-01
Health & Medicine (ProQuest)
from 1997-01-01
- MeSH
- Allosteric Regulation MeSH
- Arginine chemistry metabolism MeSH
- Bacillus subtilis chemistry genetics metabolism MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Entropy MeSH
- Escherichia coli chemistry genetics metabolism MeSH
- Phylogeny MeSH
- Protein Conformation, alpha-Helical MeSH
- Protein Conformation, beta-Strand MeSH
- Protein Domains MeSH
- Regulon genetics MeSH
- Repressor Proteins chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Molecular Dynamics Simulation MeSH
- Protein Binding MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
College of Biomedical Sciences Larkin University Miami FL 33169 USA
Department of Chemistry Princeton University Princeton NJ 08544 USA
Faculty of Sciences University of South Bohemia 37005 Ceske Budejovice Czechia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012602
- 003
- CZ-PrNML
- 005
- 20210714132728.0
- 007
- ta
- 008
- 210420s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/molecules25092247 $2 doi
- 035 __
- $a (PubMed)32397647
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Pandey, Saurabh Kumar $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia ; Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
- 245 10
- $a Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors / $c SK. Pandey, M. Melichercik, D. Řeha, RH. Ettrich, J. Carey
- 520 9_
- $a Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
- 650 _2
- $a alosterická regulace $7 D000494
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a arginin $x chemie $x metabolismus $7 D001120
- 650 _2
- $a Bacillus subtilis $x chemie $x genetika $x metabolismus $7 D001412
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
- 650 _2
- $a entropie $7 D019277
- 650 _2
- $a Escherichia coli $x chemie $x genetika $x metabolismus $7 D004926
- 650 _2
- $a vodíková vazba $7 D006860
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů, alfa-helix $7 D000072756
- 650 _2
- $a konformace proteinů, beta-řetězec $7 D000072757
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a regulon $x genetika $7 D018085
- 650 _2
- $a represorové proteiny $x chemie $x genetika $x metabolismus $7 D012097
- 650 _2
- $a sekvenční seřazení $7 D016415
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Melichercik, Milan $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
- 700 1_
- $a Řeha, David $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
- 700 1_
- $a Ettrich, Rüdiger H $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA ; Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- 700 1_
- $a Carey, Jannette $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- 773 0_
- $w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 25, č. 9 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32397647 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210714132726 $b ABA008
- 999 __
- $a ok $b bmc $g 1650879 $s 1132981
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 25 $c 9 $e 20200510 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
- GRA __
- $a 13-21053S $p Grantová Agentura České Republiky
- GRA __
- $a DBI13-58737 $p National Science Foundation
- GRA __
- $a DBI16-59726 $p National Science Foundation
- GRA __
- $a APVV-16-0600 $p Agentúra na Podporu Výskumu a Vývoja
- GRA __
- $a LM2015055 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a LM2010005 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a 2018 $p MoA between the Institute of Microbiology, Czech Academy of Sciences, and the College of Biomedical Sciences, Larkin University.
- LZP __
- $a Pubmed-20210420