Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors

SK. Pandey, M. Melichercik, D. Řeha, RH. Ettrich, J. Carey

. 2020 ; 25 (9) : . [pub] 20200510

Language English Country Switzerland

Document type Journal Article

Grant support
13-21053S Grantová Agentura České Republiky
DBI13-58737 National Science Foundation
DBI16-59726 National Science Foundation
APVV-16-0600 Agentúra na Podporu Výskumu a Vývoja
LM2015055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2010005 Ministerstvo Školství, Mládeže a Tělovýchovy
2018 MoA between the Institute of Microbiology, Czech Academy of Sciences, and the College of Biomedical Sciences, Larkin University.

Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012602
003      
CZ-PrNML
005      
20210714132728.0
007      
ta
008      
210420s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/molecules25092247 $2 doi
035    __
$a (PubMed)32397647
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Pandey, Saurabh Kumar $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia ; Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
245    10
$a Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors / $c SK. Pandey, M. Melichercik, D. Řeha, RH. Ettrich, J. Carey
520    9_
$a Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
650    _2
$a alosterická regulace $7 D000494
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a arginin $x chemie $x metabolismus $7 D001120
650    _2
$a Bacillus subtilis $x chemie $x genetika $x metabolismus $7 D001412
650    _2
$a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
650    _2
$a entropie $7 D019277
650    _2
$a Escherichia coli $x chemie $x genetika $x metabolismus $7 D004926
650    _2
$a vodíková vazba $7 D006860
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a fylogeneze $7 D010802
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů, alfa-helix $7 D000072756
650    _2
$a konformace proteinů, beta-řetězec $7 D000072757
650    _2
$a proteinové domény $7 D000072417
650    _2
$a regulon $x genetika $7 D018085
650    _2
$a represorové proteiny $x chemie $x genetika $x metabolismus $7 D012097
650    _2
$a sekvenční seřazení $7 D016415
655    _2
$a časopisecké články $7 D016428
700    1_
$a Melichercik, Milan $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
700    1_
$a Řeha, David $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
700    1_
$a Ettrich, Rüdiger H $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA ; Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
700    1_
$a Carey, Jannette $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia ; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
773    0_
$w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 25, č. 9 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32397647 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210714132726 $b ABA008
999    __
$a ok $b bmc $g 1650879 $s 1132981
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 25 $c 9 $e 20200510 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
GRA    __
$a 13-21053S $p Grantová Agentura České Republiky
GRA    __
$a DBI13-58737 $p National Science Foundation
GRA    __
$a DBI16-59726 $p National Science Foundation
GRA    __
$a APVV-16-0600 $p Agentúra na Podporu Výskumu a Vývoja
GRA    __
$a LM2015055 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LM2010005 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a 2018 $p MoA between the Institute of Microbiology, Czech Academy of Sciences, and the College of Biomedical Sciences, Larkin University.
LZP    __
$a Pubmed-20210420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...